1|A Kalman filter-based algorithm for IMU-camera calibration
Vision-aided Inertial Navigation Systems (V-INS) can provide precise state estimates for the 3D motion of a vehicle when no external references (e.g., GPS) are available. This is achieved by combining inertial measurements from an IMU with visual observations from a camera under the assumption that...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Vision-aided Inertial Navigation Systems (V-INS) can provide precise state estimates for the 3D motion of a vehicle when no external references (e.g., GPS) are available. This is achieved by combining inertial measurements from an IMU with visual observations from a camera under the assumption that the rigid transformation between the two sensors is known. Errors in the IMU-camera calibration process causes biases that reduce the accuracy of the estimation process and can even lead to divergence. In this paper, we present a Kalman filter-based algorithm for precisely determining the unknown transformation between a camera and an IMU. Contrary to previous approaches, we explicitly account for the time correlations of the IMU measurements and provide a figure of merit (covariance) for the estimated transformation. The proposed method does not require any special hardware (such as spin table or 3D laser scanner) except a calibration target. Simulation and experimental results are presented that validate the proposed method and quantify its accuracy. |
---|---|
ISSN: | 2153-0858 2153-0866 |
DOI: | 10.1109/IROS.2007.4399342 |