Auditory and visual integration based localization and tracking of humans in daily-life environments
The purpose of this research is to develop techniques that enable robots to choose and track a desired person for interaction in daily-life environments. Therefore, localizing multiple moving sounds and human faces is necessary so that robots can locate a desired person. For sound source localizatio...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng ; jpn |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The purpose of this research is to develop techniques that enable robots to choose and track a desired person for interaction in daily-life environments. Therefore, localizing multiple moving sounds and human faces is necessary so that robots can locate a desired person. For sound source localization, we used a cross-power spectrum phase analysis (CSP) method and showed that CSP can localize sound sources only using two microphones and does not need impulse response data. An expectation-maximization (EM) algorithm was shown to enable a robot to cope with multiple moving sound sources. For face localization, we developed a method that can reliably detect several faces using the skin color classification obtained by using the EM algorithm. To deal with a change in color state according to illumination condition and various skin colors, the robot can obtain new skin color features of faces detected by OpenCV, an open vision library, for detecting human faces. Finally, we developed a probability based method to integrate auditory and visual information and to produce a reliable tracking path in real time. Furthermore, the developed system chose and tracked people while dealing with various background noises that are considered loud, even in the daily-life environments. |
---|---|
ISSN: | 2153-0858 2153-0866 |
DOI: | 10.1109/IROS.2007.4399331 |