A Differential Game Approach to Formation Control
This paper presents a differential game approach to formation control of mobile robots. The formation control is formulated as a linear-quadratic Nash differential game through the use of graph theory. Finite horizon cost function is discussed under the open-loop information structure. An open-loop...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on control systems technology 2008-01, Vol.16 (1), p.85-93 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper presents a differential game approach to formation control of mobile robots. The formation control is formulated as a linear-quadratic Nash differential game through the use of graph theory. Finite horizon cost function is discussed under the open-loop information structure. An open-loop Nash equilibrium solution is investigated by establishing existence and stability conditions of the solutions of coupled (asymmetrical) Riccati differential equations. Based on the finite horizon open-loop Nash equilibrium solution, a receding horizon approach is adopted to synthesize a state-feedback controller for the formation control. Mobile robots with double integrator dynamics are used in the formation control simulation. Simulation results are provided to justify the models and solutions. |
---|---|
ISSN: | 1063-6536 1558-0865 |
DOI: | 10.1109/TCST.2007.899732 |