Best Approximation of Gaussian Neural Networks With Nodes Uniformly Spaced

This paper is aimed at exposing the reader to certain aspects in the design of the best approximants with Gaussian radial basis functions (RBFs). The class of functions to which this approach applies consists of those compactly supported in frequency. The approximative properties of uniqueness and e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transaction on neural networks and learning systems 2008-02, Vol.19 (2), p.284-298
1. Verfasser: Mulero-Martinez, J.I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper is aimed at exposing the reader to certain aspects in the design of the best approximants with Gaussian radial basis functions (RBFs). The class of functions to which this approach applies consists of those compactly supported in frequency. The approximative properties of uniqueness and existence are restricted to this class. Functions which are smooth enough can be expanded in Gaussian series converging uniformly to the objective function. The uniqueness of these series is demonstrated by the context of the orthonormal basis in a Hilbert space. Furthermore, the best approximation to a given band-limited function from a truncated Gaussian series is analyzed by an energy-based argument. This analysis not only gives a theoretical proof concerned with the existence of best approximations but addresses the problems of architectural selection. Specifically, guidance for selecting the variance and the oversampling parameters is provided for practitioners.
ISSN:1045-9227
2162-237X
1941-0093
2162-2388
DOI:10.1109/TNN.2007.905851