Real-Time Recognition of Physical Activities and Their Intensities Using Wireless Accelerometers and a Heart Rate Monitor
In this paper, we present a real-time algorithm for automatic recognition of not only physical activities, but also, in some cases, their intensities, using five triaxial wireless accelerometers and a wireless heart rate monitor. The algorithm has been evaluated using datasets consisting of 30 physi...
Gespeichert in:
Hauptverfasser: | , , , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we present a real-time algorithm for automatic recognition of not only physical activities, but also, in some cases, their intensities, using five triaxial wireless accelerometers and a wireless heart rate monitor. The algorithm has been evaluated using datasets consisting of 30 physical gymnasium activities collected from a total of 21 people at two different labs. On these activities, we have obtained a recognition accuracy performance of 94.6% using subject-dependent training and 56.3% using subject-independent training. The addition of heart rate data improves subject-dependent recognition accuracy only by 1.2% and subject-independent recognition only by 2.1%. When recognizing activity type without differentiating intensity levels, we obtain a subject-independent performance of 80.6%. We discuss why heart rate data has such little discriminatory power. |
---|---|
ISSN: | 1550-4816 2376-8541 |
DOI: | 10.1109/ISWC.2007.4373774 |