Generalized Hamilton-Jacobi-Bellman Formulation -Based Neural Network Control of Affine Nonlinear Discrete-Time Systems

In this paper, we consider the use of nonlinear networks towards obtaining nearly optimal solutions to the control of nonlinear discrete-time (DT) systems. The method is based on least squares successive approximation solution of the generalized Hamilton-Jacobi-Bellman (GHJB) equation which appears...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transaction on neural networks and learning systems 2008-01, Vol.19 (1), p.90-106
Hauptverfasser: Zheng Chen, Jagannathan, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we consider the use of nonlinear networks towards obtaining nearly optimal solutions to the control of nonlinear discrete-time (DT) systems. The method is based on least squares successive approximation solution of the generalized Hamilton-Jacobi-Bellman (GHJB) equation which appears in optimization problems. Successive approximation using the GHJB has not been applied for nonlinear DT systems. The proposed recursive method solves the GHJB equation in DT on a well-defined region of attraction. The definition of GHJB, pre-Hamiltonian function, HJB equation, and method of updating the control function for the affine nonlinear DT systems under small perturbation assumption are proposed. A neural network (NN) is used to approximate the GHJB solution. It is shown that the result is a closed-loop control based on an NN that has been tuned a priori in offline mode. Numerical examples show that, for the linear DT system, the updated control laws will converge to the optimal control, and for nonlinear DT systems, the updated control laws will converge to the suboptimal control.
ISSN:1045-9227
2162-237X
1941-0093
2162-2388
DOI:10.1109/TNN.2007.900227