Comments on Why Generalized BP Serves So Remarkably in 2-D Channels
Generalized belief propagation (GBP) algorithm has been shown recently to infer the a-posteriori probabilities of finite-state input two-dimensional (2D) Gaussian channels with memory in a practically accurate manner, thus enabling near-optimal estimation of the transmitted symbols and the Shannon-t...
Gespeichert in:
Hauptverfasser: | , , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Generalized belief propagation (GBP) algorithm has been shown recently to infer the a-posteriori probabilities of finite-state input two-dimensional (2D) Gaussian channels with memory in a practically accurate manner, thus enabling near-optimal estimation of the transmitted symbols and the Shannon-theoretic information rates. In this note, a rationalization of this excellent performance of GBP is addressed. |
---|---|
DOI: | 10.1109/ITA.2007.4357604 |