EEG Ocular Artefacts and Noise Removal

The general framework of this research is the pre-processing of the electroencephalographic (EEG) signals. The goal of this paper is to compare several combinations of wavelet denoising (WD) and independent component analysis (ICA) algorithms for noise and artefacts removal. These methods are tested...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Romo-Vazquez, R., Ranta, R., Louis-Dorr, V., Maquin, D.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The general framework of this research is the pre-processing of the electroencephalographic (EEG) signals. The goal of this paper is to compare several combinations of wavelet denoising (WD) and independent component analysis (ICA) algorithms for noise and artefacts removal. These methods are tested on simulated EEG, using different evaluation criteria. According to our results, the most effective method consists in source separation by SOBI-RO [1], followed by wavelet denoising by SURE thresholding [2].
ISSN:1094-687X
1557-170X
1558-4615
DOI:10.1109/IEMBS.2007.4353577