Development of real-time motion artifact reduction algorithm for a wearable photoplethysmography

This paper presents a motion artifact reduction algorithm for a real-time, wireless and wearable photoplethysmography (PPG) device for measuring heart beats. A wearable finger band PPG device consists of a 3-axis accelerometer, infrared LED, photo diode, a microprocessor and wireless module. Sources...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society 2007-01, Vol.2007, p.1538-1541
Hauptverfasser: Han, Hyonyoung, Kim, Min-Joon, Kim, Jung
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents a motion artifact reduction algorithm for a real-time, wireless and wearable photoplethysmography (PPG) device for measuring heart beats. A wearable finger band PPG device consists of a 3-axis accelerometer, infrared LED, photo diode, a microprocessor and wireless module. Sources of the motion artifacts were investigated from the hand motions, through computing the correlations between the three directional finger motions and distorted PPG signals. A two-dimensional active noise cancellation algorithm was applied to compensate the distorted signals by motions, using the directional accelerometer data. NLMS (Normalized Least Mean Square) adaptive filter (4th order) was employed in the algorithm. As a result, the signals' distortion rates were reduced from 52.34% to 3.53%, at frequencies between 1 and 2.5 Hz, which representing daily motions such walking and jogging. The wearable health monitoring device equipped with the motion artifact reduction algorithm can be integrated as a terminal in a so-called ubiquitous healthcare system, which provides a continuous health monitoring without interrupting a daily life.
ISSN:1094-687X
1557-170X
1558-4615
DOI:10.1109/IEMBS.2007.4352596