Discrete Lyapunov Exponent and Resistance to Differential Cryptanalysis
In a recent paper, Jakimoski and Subbalakshmi provided a nice connection between the so-called discrete Lyapunov exponent of a permutation F defined on a finite lattice and its maximal differential probability, a parameter that measures the complexity of a differential cryptanalysis attack on the su...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on circuits and systems. 2, Analog and digital signal processing Analog and digital signal processing, 2007-10, Vol.54 (10), p.882-886 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In a recent paper, Jakimoski and Subbalakshmi provided a nice connection between the so-called discrete Lyapunov exponent of a permutation F defined on a finite lattice and its maximal differential probability, a parameter that measures the complexity of a differential cryptanalysis attack on the substitution defined by F. In this brief, we take a second look at their result to find some practical shortcomings. We also discuss more general aspects. |
---|---|
ISSN: | 1549-7747 1057-7130 1558-3791 |
DOI: | 10.1109/TCSII.2007.901576 |