High-Power Three-Port Three-Phase Bidirectional DC-DC Converter

This paper proposes a three-port three-phase bidirectional DC-DC converter suitable for high-power applications. The converter combines a slow primary source and a fast storage to power a common load (e.g., an inverter). Since this type of system is gaining popularity in sustainable energy generatio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Haimin Tao, Duarte, J.L., Hendrix, M.A.M.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper proposes a three-port three-phase bidirectional DC-DC converter suitable for high-power applications. The converter combines a slow primary source and a fast storage to power a common load (e.g., an inverter). Since this type of system is gaining popularity in sustainable energy generation systems and electrical vehicles, the proposed topology is of practical interest The proposed converter consists of three high-frequency inverter stages operating in a six-step mode, and a high-frequency three-port three-phase symmetrical transformer. The converter provides galvanic isolation and supports bidirectional power flow for all the three ports. An arbitrary power flow profile in the system can be achieved by phase shifting the three inverter stages. Thanks to the three-phase structure, the current handling capability of the circuit is larger and the ripple currents at the dc sides are much lower owing to the interleaving effect of the three- phase, and thus the VA rating of the filter capacitors is much lower. The operating principle and, in particular, the transformer design which is based on conventionally and coaxially wound structures are presented. Circuit simulation results are included to verify the proposed converter topology and the dual-PI-loop control strategy.
ISSN:0197-2618
2576-702X
DOI:10.1109/07IAS.2007.306