Adaptive Fuzzy Approaches to Modelling Operator Functional States in a Human-Machine Process Control System
This paper assesses the operator functional state (OFS) of human operators based on a collection of psychophysiological and performance measures. Two types of adaptive fuzzy models, namely ANFIS (adaptive-network-based fuzzy inference system) and GA (genetic algorithm) based Mamdani fuzzy model, are...
Gespeichert in:
Hauptverfasser: | , , , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper assesses the operator functional state (OFS) of human operators based on a collection of psychophysiological and performance measures. Two types of adaptive fuzzy models, namely ANFIS (adaptive-network-based fuzzy inference system) and GA (genetic algorithm) based Mamdani fuzzy model, are employed to estimate the OFSs under a set of simulated process control tasks involved in an automation-enhanced cabin air management system (aCAMS). The adaptive fuzzy modelling procedures are described and then validated using real-life data measured from such a simulated human-machine process control system. |
---|---|
ISSN: | 1098-7584 |
DOI: | 10.1109/FUZZY.2007.4295371 |