Generation of Pedal Operation Patterns of Individual Drivers in Car-Following for Personalized Cruise Control
This paper presents a method to generate car-following patterns for individual drivers. We assume that driving is a recursive process. A driver recognizes a road environment such as velocity and following distance and adjusts gas and brake pedal positions. A vehicle status changes according to the d...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper presents a method to generate car-following patterns for individual drivers. We assume that driving is a recursive process. A driver recognizes a road environment such as velocity and following distance and adjusts gas and brake pedal positions. A vehicle status changes according to the driver's operation and the road environment changes according to the vehicle status. Driving patterns of each driver are modeled with a Gaussian mixture model (GMM), which is trained as a joint probability distribution of following distance, velocity, pedal position signals and their dynamics. Gas and brake pedal operation patterns are generated from the GMMs in a maximum likelihood criterion so that the conditional probability is maximized for a given environment i.e., following distance and velocity. Experimental results for a driving simulator show that car-following patterns generated from GMMs for three different drivers maintain their individual driving characteristics. |
---|---|
ISSN: | 1931-0587 2642-7214 |
DOI: | 10.1109/IVS.2007.4290218 |