An Experimental Design Approach for Optimizing SMSE Waveforms to Minimize Coexistent Interference
An experimental design approach is used to determine which factors (design parameters) of spectrally modulated, spectrally encoded (SMSE) waveforms have the greatest impact on coexistence with other communication waveforms. The SMSE framework supports cognition-based, software defined radio (SDR) ap...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | An experimental design approach is used to determine which factors (design parameters) of spectrally modulated, spectrally encoded (SMSE) waveforms have the greatest impact on coexistence with other communication waveforms. The SMSE framework supports cognition-based, software defined radio (SDR) applications and is well-suited for coexistence analysis. For initial proof-of-concept, a two factor (parameter), three-level (value) experimental design technique is applied to a coexistent scenario to characterize SMSE waveform impact on direct sequence spread spectrum (DSSS) receiver performance. The experimental design methodology reliably captures factor-level sensitivities and identifies those factors having greatest impact on system coexistence behavior (bit error variation). Given these initial results and its effectiveness in other engineering fields, it is believed that experimental design may pave the way for developing more rigorous waveform design methods and allow more robust coexistence analysis of conventional, DSSS and SMSE waveforms. |
---|---|
ISSN: | 1550-3607 1938-1883 |
DOI: | 10.1109/ICC.2007.925 |