Reduced-Complexity Power-Efficient Wireless OFDMA using an Equally Probable CSI Quantizer
Emerging applications involving low-cost wireless sensor networks motivate well optimization of multi-user orthogonal frequency-division multiple access (OFDMA) in the power-limited regime. In this context, the present paper relies on limited- rate feedback (LRF) sent from the access point to termin...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Emerging applications involving low-cost wireless sensor networks motivate well optimization of multi-user orthogonal frequency-division multiple access (OFDMA) in the power-limited regime. In this context, the present paper relies on limited- rate feedback (LRF) sent from the access point to terminals to acquire quantized channel state information (CSI) in order to minimize the total average transmit-power under individual average rate and error probability constraints. Specifically, we introduce two suboptimal reduced-complexity schemes to: (i) allocate power, rate and subcarriers across users; and (ii) design accordingly the channel quantizer. The latter relies on the solution of (i) to design equally probable quantization regions per subcarrier and user. Numerical examples corroborate the analytical claims and reveal that the power savings achieved by our reduced-complexity LRF designs are close to those achieved by the optimal solution. |
---|---|
ISSN: | 1550-3607 1938-1883 |
DOI: | 10.1109/ICC.2007.484 |