A Novel Classifier Selection Approach for Adaptive Boosting Algorithms

Boosting is a general approach for improving classifier performances. In this research we investigated these issues with the latest Boosting algorithm AdaBoostMl. A trial and error classifier feeding with the AdaBoostMl algorithm is a regular practice for classification tasks in the research communi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Ali, S., Dobele, T.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Boosting is a general approach for improving classifier performances. In this research we investigated these issues with the latest Boosting algorithm AdaBoostMl. A trial and error classifier feeding with the AdaBoostMl algorithm is a regular practice for classification tasks in the research community. We provide a novel statistical information- based rule method for unique classifier selection with the AdaBoostMl algorithm. The solution also verified a wide range of benchmark classification problems.
DOI:10.1109/ICIS.2007.38