Dynamic Fault Tree Analysis Using Input/Output Interactive Markov Chains
Dynamic fault trees (DFT) extend standard fault trees by allowing the modeling of complex system components' behaviors and interactions. Being a high level model and easy to use, DFT are experiencing a growing success among reliability engineers. Unfortunately, a number of issues still remains...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Dynamic fault trees (DFT) extend standard fault trees by allowing the modeling of complex system components' behaviors and interactions. Being a high level model and easy to use, DFT are experiencing a growing success among reliability engineers. Unfortunately, a number of issues still remains when using DFT. Briefly, these issues are (1) a lack of formality (syntax and semantics), (2) limitations in modular analysis and thus vulnerability to the state-space explosion problem, and (3) lack in modular model-building. We use the input/output interactiveMarkov chain (I/O-IMC) formalism to analyse DFT. I/O-IMC have a precise semantics and are an extension of continuous-time Markov chains with input and output actions. In this paper, using the I/OI-MC framework, we address and resolve issues (2) and (3) mentioned above. We also show, through some examples, how one can readily extend the DFT modeling capabilities using the I/O-IMC framework. |
---|---|
ISSN: | 1530-0889 2158-3927 |
DOI: | 10.1109/DSN.2007.37 |