Non-linear IR Scene Prediction for Range Video Surveillance

This paper describes a non-linear IR (infra-red) scene prediction method for range video surveillance and navigation. A Gabor-filter bank is selected as a primary detector for any changes in a given IR range image sequence. The detected ROI (region of interest) involving arbitrary motion is fed to a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Celenk, M., Graham, J., Kai-Jen Cheng
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper describes a non-linear IR (infra-red) scene prediction method for range video surveillance and navigation. A Gabor-filter bank is selected as a primary detector for any changes in a given IR range image sequence. The detected ROI (region of interest) involving arbitrary motion is fed to a non-linear Kalman filter for predicting the next scene in time-varying 3D IR video. Potential applications of this research are mainly in indoor/outdoor heat-change based range measurement, synthetic IR scene generation, rescue missions, and autonomous navigation. Experimental results reported herein show that non-linear Kalman filtering-based scene prediction can perform more accurately than linear estimation of future frames in range and intensity driven sensing. The low least mean square error (LMSE), on the average of about 2% using a bank of 8 Gabor filters, also proves the reliability of the IR scene estimator (or predictor) developed in this work.
ISSN:1063-6919
DOI:10.1109/CVPR.2007.383445