Real-time Gesture Recognition with Minimal Training Requirements and On-line Learning

In this paper, we introduce the semantic network model (SNM), a generalization of the hidden Markov model (HMM) that uses factorization of state transition probabilities to reduce training requirements, increase the efficiency of gesture recognition and on-line learning, and allow more precision in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Rajko, S., Gang Qian, Ingalls, T., James, J.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we introduce the semantic network model (SNM), a generalization of the hidden Markov model (HMM) that uses factorization of state transition probabilities to reduce training requirements, increase the efficiency of gesture recognition and on-line learning, and allow more precision in gesture modeling. We demonstrate the advantages both formally and experimentally, using examples such as full-body multimodal gesture recognition via optical motion capture and a pressure sensitive floor, as well as mouse/pen gesture recognition. Our results show that our algorithm performs much better than the traditional approach in situations where training samples are limited and/or the precision of the gesture model is high.
ISSN:1063-6919
DOI:10.1109/CVPR.2007.383330