An Approach for Multisensor Harmonization in Snow Cover Area Mapping

In this study, we have developed an approach for fusion of optical and SAR data for snow cover fraction (SCF) retrieval that avoids the typical blending effects when combining independently retrieved geophysical data from different sensors. Instead of undertaking the sensor fusion at the geophysical...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Solberg, R., Koren, H., Malnes, E., Haarpaintner, J., Lauknes, I.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this study, we have developed an approach for fusion of optical and SAR data for snow cover fraction (SCF) retrieval that avoids the typical blending effects when combining independently retrieved geophysical data from different sensors. Instead of undertaking the sensor fusion at the geophysical parameter level, the fusion is done at the electromagnetic signal level. A state model, based on hidden Markov model theory, has been developed for the simultaneous signal from the optical and the SAR sensors. The model goes through a given set of states through the snowmelt season where transition probability distribution functions of time have been determined for each state transition. A coupling between corresponding models for optical and SAR observations has been developed in order to make a more reliable model of the sensor co-variation.
ISSN:2153-6996
2153-7003
DOI:10.1109/IGARSS.2006.561