Extracting NPC behavior from computer games using computer vision and machine learning techniques

We present a first application of a general approach to learn the behavior of NPCs (and other entities) in a game from observing just the graphical output of the game during game play. This allows some understanding of what a human player might be able to learn during game play. The approach uses ob...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Fink, A., Denzinger, J., Aycock, J.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present a first application of a general approach to learn the behavior of NPCs (and other entities) in a game from observing just the graphical output of the game during game play. This allows some understanding of what a human player might be able to learn during game play. The approach uses object tracking and situation-action pairs with the nearest-neighbor rule. For the game of Pong, we were able to predict the correct behavior of the computer controlled components approximately 9 out of 10 times, even if we keep the usage of knowledge about the game (beyond observing the images) at a minimum
ISSN:2325-4270
DOI:10.1109/CIG.2007.368075