Automatic Robust Adaptive Beamforming via Ridge Regression
In this paper we derive a class of new parameter free robust adaptive beamformers using the generalized sidelobe canceler reparameterization of the Capon beamformer. In this parameterization the minimum variance beamformer is obtained as the solution of a linear least squares problem. In the case of...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | II-968 |
---|---|
container_issue | |
container_start_page | II-965 |
container_title | |
container_volume | 2 |
creator | Selen, Y. Abrahamsson, R. Stoica, P. |
description | In this paper we derive a class of new parameter free robust adaptive beamformers using the generalized sidelobe canceler reparameterization of the Capon beamformer. In this parameterization the minimum variance beamformer is obtained as the solution of a linear least squares problem. In the case of an inaccurate steering vector and/or few data snapshots this marginally overdetermined system gives an ill fit causing signal cancellation in the standard minimum variance solution. By regularizing the problem using ridge regression techniques we get a whole class of robust adaptive beamformers, none of which requires the choice of a user parameter. We also propose a novel empirical Bayes-based ridge regression technique. The performance is compared to other robust adaptive beamformers. |
doi_str_mv | 10.1109/ICASSP.2007.366398 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4217571</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4217571</ieee_id><sourcerecordid>4217571</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-e951793a32f39b242364137fd8001873e8af81b41899bcc802a629bf74a0cc0f3</originalsourceid><addsrcrecordid>eNpVjstKxDAUQOMLrOP8gG7yA633JmmT664OvmBA6Si4G9I2KRE7HZrOgH_vgG5cncWBw2HsCiFDBLp5XpSr1WsmAHQmi0KSOWJz0gaVUAq0MMUxS4TUlCLBx8k_p-mUJZgLSAtUdM4uYvwEAKOVSdhtuZuG3k6h4dVQ7-LEy9Zup7B3_M7Z3g9jHzYd3wfLq9B2jleuG12MYdhcsjNvv6Kb_3HG3h_u3xZP6fLl8fC7TAPqfEod5ahJWim8pFooIQuFUvvWAKDR0hnrDdYKDVHdNAaELQTVXisLTQNeztj1bzc459bbMfR2_F4rcahrlD9Cekum</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Automatic Robust Adaptive Beamforming via Ridge Regression</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Selen, Y. ; Abrahamsson, R. ; Stoica, P.</creator><creatorcontrib>Selen, Y. ; Abrahamsson, R. ; Stoica, P.</creatorcontrib><description>In this paper we derive a class of new parameter free robust adaptive beamformers using the generalized sidelobe canceler reparameterization of the Capon beamformer. In this parameterization the minimum variance beamformer is obtained as the solution of a linear least squares problem. In the case of an inaccurate steering vector and/or few data snapshots this marginally overdetermined system gives an ill fit causing signal cancellation in the standard minimum variance solution. By regularizing the problem using ridge regression techniques we get a whole class of robust adaptive beamformers, none of which requires the choice of a user parameter. We also propose a novel empirical Bayes-based ridge regression technique. The performance is compared to other robust adaptive beamformers.</description><identifier>ISSN: 1520-6149</identifier><identifier>ISBN: 9781424407279</identifier><identifier>ISBN: 1424407273</identifier><identifier>EISSN: 2379-190X</identifier><identifier>EISBN: 9781424407286</identifier><identifier>EISBN: 1424407281</identifier><identifier>DOI: 10.1109/ICASSP.2007.366398</identifier><language>eng</language><publisher>IEEE</publisher><subject>Array signal processing ; Capon beamforming ; Covariance matrix ; Information technology ; Interference cancellation ; Interference suppression ; Least squares methods ; minimum variance beamforming ; Noise robustness ; regularization ; ridge regression ; robust beamforming ; Sensor arrays ; Uncertainty ; Vectors</subject><ispartof>2007 IEEE International Conference on Acoustics, Speech and Signal Processing - ICASSP '07, 2007, Vol.2, p.II-965-II-968</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4217571$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4217571$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Selen, Y.</creatorcontrib><creatorcontrib>Abrahamsson, R.</creatorcontrib><creatorcontrib>Stoica, P.</creatorcontrib><title>Automatic Robust Adaptive Beamforming via Ridge Regression</title><title>2007 IEEE International Conference on Acoustics, Speech and Signal Processing - ICASSP '07</title><addtitle>ICASSP</addtitle><description>In this paper we derive a class of new parameter free robust adaptive beamformers using the generalized sidelobe canceler reparameterization of the Capon beamformer. In this parameterization the minimum variance beamformer is obtained as the solution of a linear least squares problem. In the case of an inaccurate steering vector and/or few data snapshots this marginally overdetermined system gives an ill fit causing signal cancellation in the standard minimum variance solution. By regularizing the problem using ridge regression techniques we get a whole class of robust adaptive beamformers, none of which requires the choice of a user parameter. We also propose a novel empirical Bayes-based ridge regression technique. The performance is compared to other robust adaptive beamformers.</description><subject>Array signal processing</subject><subject>Capon beamforming</subject><subject>Covariance matrix</subject><subject>Information technology</subject><subject>Interference cancellation</subject><subject>Interference suppression</subject><subject>Least squares methods</subject><subject>minimum variance beamforming</subject><subject>Noise robustness</subject><subject>regularization</subject><subject>ridge regression</subject><subject>robust beamforming</subject><subject>Sensor arrays</subject><subject>Uncertainty</subject><subject>Vectors</subject><issn>1520-6149</issn><issn>2379-190X</issn><isbn>9781424407279</isbn><isbn>1424407273</isbn><isbn>9781424407286</isbn><isbn>1424407281</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVjstKxDAUQOMLrOP8gG7yA633JmmT664OvmBA6Si4G9I2KRE7HZrOgH_vgG5cncWBw2HsCiFDBLp5XpSr1WsmAHQmi0KSOWJz0gaVUAq0MMUxS4TUlCLBx8k_p-mUJZgLSAtUdM4uYvwEAKOVSdhtuZuG3k6h4dVQ7-LEy9Zup7B3_M7Z3g9jHzYd3wfLq9B2jleuG12MYdhcsjNvv6Kb_3HG3h_u3xZP6fLl8fC7TAPqfEod5ahJWim8pFooIQuFUvvWAKDR0hnrDdYKDVHdNAaELQTVXisLTQNeztj1bzc459bbMfR2_F4rcahrlD9Cekum</recordid><startdate>200704</startdate><enddate>200704</enddate><creator>Selen, Y.</creator><creator>Abrahamsson, R.</creator><creator>Stoica, P.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200704</creationdate><title>Automatic Robust Adaptive Beamforming via Ridge Regression</title><author>Selen, Y. ; Abrahamsson, R. ; Stoica, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-e951793a32f39b242364137fd8001873e8af81b41899bcc802a629bf74a0cc0f3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Array signal processing</topic><topic>Capon beamforming</topic><topic>Covariance matrix</topic><topic>Information technology</topic><topic>Interference cancellation</topic><topic>Interference suppression</topic><topic>Least squares methods</topic><topic>minimum variance beamforming</topic><topic>Noise robustness</topic><topic>regularization</topic><topic>ridge regression</topic><topic>robust beamforming</topic><topic>Sensor arrays</topic><topic>Uncertainty</topic><topic>Vectors</topic><toplevel>online_resources</toplevel><creatorcontrib>Selen, Y.</creatorcontrib><creatorcontrib>Abrahamsson, R.</creatorcontrib><creatorcontrib>Stoica, P.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Selen, Y.</au><au>Abrahamsson, R.</au><au>Stoica, P.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Automatic Robust Adaptive Beamforming via Ridge Regression</atitle><btitle>2007 IEEE International Conference on Acoustics, Speech and Signal Processing - ICASSP '07</btitle><stitle>ICASSP</stitle><date>2007-04</date><risdate>2007</risdate><volume>2</volume><spage>II-965</spage><epage>II-968</epage><pages>II-965-II-968</pages><issn>1520-6149</issn><eissn>2379-190X</eissn><isbn>9781424407279</isbn><isbn>1424407273</isbn><eisbn>9781424407286</eisbn><eisbn>1424407281</eisbn><abstract>In this paper we derive a class of new parameter free robust adaptive beamformers using the generalized sidelobe canceler reparameterization of the Capon beamformer. In this parameterization the minimum variance beamformer is obtained as the solution of a linear least squares problem. In the case of an inaccurate steering vector and/or few data snapshots this marginally overdetermined system gives an ill fit causing signal cancellation in the standard minimum variance solution. By regularizing the problem using ridge regression techniques we get a whole class of robust adaptive beamformers, none of which requires the choice of a user parameter. We also propose a novel empirical Bayes-based ridge regression technique. The performance is compared to other robust adaptive beamformers.</abstract><pub>IEEE</pub><doi>10.1109/ICASSP.2007.366398</doi></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1520-6149 |
ispartof | 2007 IEEE International Conference on Acoustics, Speech and Signal Processing - ICASSP '07, 2007, Vol.2, p.II-965-II-968 |
issn | 1520-6149 2379-190X |
language | eng |
recordid | cdi_ieee_primary_4217571 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Array signal processing Capon beamforming Covariance matrix Information technology Interference cancellation Interference suppression Least squares methods minimum variance beamforming Noise robustness regularization ridge regression robust beamforming Sensor arrays Uncertainty Vectors |
title | Automatic Robust Adaptive Beamforming via Ridge Regression |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T11%3A14%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Automatic%20Robust%20Adaptive%20Beamforming%20via%20Ridge%20Regression&rft.btitle=2007%20IEEE%20International%20Conference%20on%20Acoustics,%20Speech%20and%20Signal%20Processing%20-%20ICASSP%20'07&rft.au=Selen,%20Y.&rft.date=2007-04&rft.volume=2&rft.spage=II-965&rft.epage=II-968&rft.pages=II-965-II-968&rft.issn=1520-6149&rft.eissn=2379-190X&rft.isbn=9781424407279&rft.isbn_list=1424407273&rft_id=info:doi/10.1109/ICASSP.2007.366398&rft_dat=%3Cieee_6IE%3E4217571%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424407286&rft.eisbn_list=1424407281&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4217571&rfr_iscdi=true |