Automatic Robust Adaptive Beamforming via Ridge Regression

In this paper we derive a class of new parameter free robust adaptive beamformers using the generalized sidelobe canceler reparameterization of the Capon beamformer. In this parameterization the minimum variance beamformer is obtained as the solution of a linear least squares problem. In the case of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Selen, Y., Abrahamsson, R., Stoica, P.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page II-968
container_issue
container_start_page II-965
container_title
container_volume 2
creator Selen, Y.
Abrahamsson, R.
Stoica, P.
description In this paper we derive a class of new parameter free robust adaptive beamformers using the generalized sidelobe canceler reparameterization of the Capon beamformer. In this parameterization the minimum variance beamformer is obtained as the solution of a linear least squares problem. In the case of an inaccurate steering vector and/or few data snapshots this marginally overdetermined system gives an ill fit causing signal cancellation in the standard minimum variance solution. By regularizing the problem using ridge regression techniques we get a whole class of robust adaptive beamformers, none of which requires the choice of a user parameter. We also propose a novel empirical Bayes-based ridge regression technique. The performance is compared to other robust adaptive beamformers.
doi_str_mv 10.1109/ICASSP.2007.366398
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4217571</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4217571</ieee_id><sourcerecordid>4217571</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-e951793a32f39b242364137fd8001873e8af81b41899bcc802a629bf74a0cc0f3</originalsourceid><addsrcrecordid>eNpVjstKxDAUQOMLrOP8gG7yA633JmmT664OvmBA6Si4G9I2KRE7HZrOgH_vgG5cncWBw2HsCiFDBLp5XpSr1WsmAHQmi0KSOWJz0gaVUAq0MMUxS4TUlCLBx8k_p-mUJZgLSAtUdM4uYvwEAKOVSdhtuZuG3k6h4dVQ7-LEy9Zup7B3_M7Z3g9jHzYd3wfLq9B2jleuG12MYdhcsjNvv6Kb_3HG3h_u3xZP6fLl8fC7TAPqfEod5ahJWim8pFooIQuFUvvWAKDR0hnrDdYKDVHdNAaELQTVXisLTQNeztj1bzc459bbMfR2_F4rcahrlD9Cekum</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Automatic Robust Adaptive Beamforming via Ridge Regression</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Selen, Y. ; Abrahamsson, R. ; Stoica, P.</creator><creatorcontrib>Selen, Y. ; Abrahamsson, R. ; Stoica, P.</creatorcontrib><description>In this paper we derive a class of new parameter free robust adaptive beamformers using the generalized sidelobe canceler reparameterization of the Capon beamformer. In this parameterization the minimum variance beamformer is obtained as the solution of a linear least squares problem. In the case of an inaccurate steering vector and/or few data snapshots this marginally overdetermined system gives an ill fit causing signal cancellation in the standard minimum variance solution. By regularizing the problem using ridge regression techniques we get a whole class of robust adaptive beamformers, none of which requires the choice of a user parameter. We also propose a novel empirical Bayes-based ridge regression technique. The performance is compared to other robust adaptive beamformers.</description><identifier>ISSN: 1520-6149</identifier><identifier>ISBN: 9781424407279</identifier><identifier>ISBN: 1424407273</identifier><identifier>EISSN: 2379-190X</identifier><identifier>EISBN: 9781424407286</identifier><identifier>EISBN: 1424407281</identifier><identifier>DOI: 10.1109/ICASSP.2007.366398</identifier><language>eng</language><publisher>IEEE</publisher><subject>Array signal processing ; Capon beamforming ; Covariance matrix ; Information technology ; Interference cancellation ; Interference suppression ; Least squares methods ; minimum variance beamforming ; Noise robustness ; regularization ; ridge regression ; robust beamforming ; Sensor arrays ; Uncertainty ; Vectors</subject><ispartof>2007 IEEE International Conference on Acoustics, Speech and Signal Processing - ICASSP '07, 2007, Vol.2, p.II-965-II-968</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4217571$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4217571$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Selen, Y.</creatorcontrib><creatorcontrib>Abrahamsson, R.</creatorcontrib><creatorcontrib>Stoica, P.</creatorcontrib><title>Automatic Robust Adaptive Beamforming via Ridge Regression</title><title>2007 IEEE International Conference on Acoustics, Speech and Signal Processing - ICASSP '07</title><addtitle>ICASSP</addtitle><description>In this paper we derive a class of new parameter free robust adaptive beamformers using the generalized sidelobe canceler reparameterization of the Capon beamformer. In this parameterization the minimum variance beamformer is obtained as the solution of a linear least squares problem. In the case of an inaccurate steering vector and/or few data snapshots this marginally overdetermined system gives an ill fit causing signal cancellation in the standard minimum variance solution. By regularizing the problem using ridge regression techniques we get a whole class of robust adaptive beamformers, none of which requires the choice of a user parameter. We also propose a novel empirical Bayes-based ridge regression technique. The performance is compared to other robust adaptive beamformers.</description><subject>Array signal processing</subject><subject>Capon beamforming</subject><subject>Covariance matrix</subject><subject>Information technology</subject><subject>Interference cancellation</subject><subject>Interference suppression</subject><subject>Least squares methods</subject><subject>minimum variance beamforming</subject><subject>Noise robustness</subject><subject>regularization</subject><subject>ridge regression</subject><subject>robust beamforming</subject><subject>Sensor arrays</subject><subject>Uncertainty</subject><subject>Vectors</subject><issn>1520-6149</issn><issn>2379-190X</issn><isbn>9781424407279</isbn><isbn>1424407273</isbn><isbn>9781424407286</isbn><isbn>1424407281</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVjstKxDAUQOMLrOP8gG7yA633JmmT664OvmBA6Si4G9I2KRE7HZrOgH_vgG5cncWBw2HsCiFDBLp5XpSr1WsmAHQmi0KSOWJz0gaVUAq0MMUxS4TUlCLBx8k_p-mUJZgLSAtUdM4uYvwEAKOVSdhtuZuG3k6h4dVQ7-LEy9Zup7B3_M7Z3g9jHzYd3wfLq9B2jleuG12MYdhcsjNvv6Kb_3HG3h_u3xZP6fLl8fC7TAPqfEod5ahJWim8pFooIQuFUvvWAKDR0hnrDdYKDVHdNAaELQTVXisLTQNeztj1bzc459bbMfR2_F4rcahrlD9Cekum</recordid><startdate>200704</startdate><enddate>200704</enddate><creator>Selen, Y.</creator><creator>Abrahamsson, R.</creator><creator>Stoica, P.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200704</creationdate><title>Automatic Robust Adaptive Beamforming via Ridge Regression</title><author>Selen, Y. ; Abrahamsson, R. ; Stoica, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-e951793a32f39b242364137fd8001873e8af81b41899bcc802a629bf74a0cc0f3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Array signal processing</topic><topic>Capon beamforming</topic><topic>Covariance matrix</topic><topic>Information technology</topic><topic>Interference cancellation</topic><topic>Interference suppression</topic><topic>Least squares methods</topic><topic>minimum variance beamforming</topic><topic>Noise robustness</topic><topic>regularization</topic><topic>ridge regression</topic><topic>robust beamforming</topic><topic>Sensor arrays</topic><topic>Uncertainty</topic><topic>Vectors</topic><toplevel>online_resources</toplevel><creatorcontrib>Selen, Y.</creatorcontrib><creatorcontrib>Abrahamsson, R.</creatorcontrib><creatorcontrib>Stoica, P.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Selen, Y.</au><au>Abrahamsson, R.</au><au>Stoica, P.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Automatic Robust Adaptive Beamforming via Ridge Regression</atitle><btitle>2007 IEEE International Conference on Acoustics, Speech and Signal Processing - ICASSP '07</btitle><stitle>ICASSP</stitle><date>2007-04</date><risdate>2007</risdate><volume>2</volume><spage>II-965</spage><epage>II-968</epage><pages>II-965-II-968</pages><issn>1520-6149</issn><eissn>2379-190X</eissn><isbn>9781424407279</isbn><isbn>1424407273</isbn><eisbn>9781424407286</eisbn><eisbn>1424407281</eisbn><abstract>In this paper we derive a class of new parameter free robust adaptive beamformers using the generalized sidelobe canceler reparameterization of the Capon beamformer. In this parameterization the minimum variance beamformer is obtained as the solution of a linear least squares problem. In the case of an inaccurate steering vector and/or few data snapshots this marginally overdetermined system gives an ill fit causing signal cancellation in the standard minimum variance solution. By regularizing the problem using ridge regression techniques we get a whole class of robust adaptive beamformers, none of which requires the choice of a user parameter. We also propose a novel empirical Bayes-based ridge regression technique. The performance is compared to other robust adaptive beamformers.</abstract><pub>IEEE</pub><doi>10.1109/ICASSP.2007.366398</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1520-6149
ispartof 2007 IEEE International Conference on Acoustics, Speech and Signal Processing - ICASSP '07, 2007, Vol.2, p.II-965-II-968
issn 1520-6149
2379-190X
language eng
recordid cdi_ieee_primary_4217571
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Array signal processing
Capon beamforming
Covariance matrix
Information technology
Interference cancellation
Interference suppression
Least squares methods
minimum variance beamforming
Noise robustness
regularization
ridge regression
robust beamforming
Sensor arrays
Uncertainty
Vectors
title Automatic Robust Adaptive Beamforming via Ridge Regression
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T11%3A14%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Automatic%20Robust%20Adaptive%20Beamforming%20via%20Ridge%20Regression&rft.btitle=2007%20IEEE%20International%20Conference%20on%20Acoustics,%20Speech%20and%20Signal%20Processing%20-%20ICASSP%20'07&rft.au=Selen,%20Y.&rft.date=2007-04&rft.volume=2&rft.spage=II-965&rft.epage=II-968&rft.pages=II-965-II-968&rft.issn=1520-6149&rft.eissn=2379-190X&rft.isbn=9781424407279&rft.isbn_list=1424407273&rft_id=info:doi/10.1109/ICASSP.2007.366398&rft_dat=%3Cieee_6IE%3E4217571%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424407286&rft.eisbn_list=1424407281&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4217571&rfr_iscdi=true