Automatic Robust Adaptive Beamforming via Ridge Regression
In this paper we derive a class of new parameter free robust adaptive beamformers using the generalized sidelobe canceler reparameterization of the Capon beamformer. In this parameterization the minimum variance beamformer is obtained as the solution of a linear least squares problem. In the case of...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper we derive a class of new parameter free robust adaptive beamformers using the generalized sidelobe canceler reparameterization of the Capon beamformer. In this parameterization the minimum variance beamformer is obtained as the solution of a linear least squares problem. In the case of an inaccurate steering vector and/or few data snapshots this marginally overdetermined system gives an ill fit causing signal cancellation in the standard minimum variance solution. By regularizing the problem using ridge regression techniques we get a whole class of robust adaptive beamformers, none of which requires the choice of a user parameter. We also propose a novel empirical Bayes-based ridge regression technique. The performance is compared to other robust adaptive beamformers. |
---|---|
ISSN: | 1520-6149 2379-190X |
DOI: | 10.1109/ICASSP.2007.366398 |