Facial Expression Recognition in Videos using a Novel Multi-Class Support Vector Machines Variant
In this paper, a novel class of support vector machines (SVM) is introduced to deal with facial expression recognition. The proposed classifier incorporates statistic information about the classes under examination into the classical SVM. The developed system performs facial expression recognition i...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, a novel class of support vector machines (SVM) is introduced to deal with facial expression recognition. The proposed classifier incorporates statistic information about the classes under examination into the classical SVM. The developed system performs facial expression recognition in facial videos. The grid tracking and deformation algorithm used tracks the Candide grid over time as the facial expression evolves, until the frame that corresponds to the greatest facial expression intensity. The geometrical displacement of Candide nodes is used as an input to the bank of novel SVM classifiers, that are utilized to recognize the six basic facial expressions. The experiments on the Cohn-Kanade database show a recognition accuracy of 98.2%. |
---|---|
ISSN: | 1520-6149 2379-190X |
DOI: | 10.1109/ICASSP.2007.366303 |