Quaternary Convolutional Codes From Linear Block Codes Over Galois Rings

From a linear block code B over the Galois ring GR(4, m) with a k times n generator matrix and minimum Hamming distance d, a rate-k/n convolutional code over the ring Z 4 with squared Euclidean free distance at least 2d and a nonrecursive encoder with memory at most m - 1 is constructed. When the ge...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory 2007-06, Vol.53 (6), p.2267-2270
Hauptverfasser: Sole, Patrick, Sison, Virgilio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:From a linear block code B over the Galois ring GR(4, m) with a k times n generator matrix and minimum Hamming distance d, a rate-k/n convolutional code over the ring Z 4 with squared Euclidean free distance at least 2d and a nonrecursive encoder with memory at most m - 1 is constructed. When the generator matrix of B is systematic, the convolutional encoder is systematic, basic, noncatastrophic and minimal. Long codes constructed in this manner are shown to satisfy a Gilbert-Varshnmov bound.
ISSN:0018-9448
1557-9654
DOI:10.1109/TIT.2007.896884