FEATURE-BASED VS. INTENSITY-BASED BRAIN IMAGE REGISTRATION: COMPREHENSIVE COMPARISON USING MUTUAL INFORMATION

We propose a mutual information-based method for quantitative evaluation of the deformable registration algorithms at three levels: global, voxel-wise and anatomical structure. We compare two fully deformable registration algorithms: feature-based HAMMER and a set of intensity-based algorithms (FEM-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Teverovskiy, L.A., Carmichael, O.T., Aizenstein, H.J., Lazar, N., Liu, Y.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose a mutual information-based method for quantitative evaluation of the deformable registration algorithms at three levels: global, voxel-wise and anatomical structure. We compare two fully deformable registration algorithms: feature-based HAMMER and a set of intensity-based algorithms (FEM-Demons) in the ITK package. Evaluation is carried out using the AAE template image with 116 labeled anatomical structures and a set of 59 MR brain images: 20 normal controls (CTE), 20 Alzheimer's disease patients (AD) and 19 mild cognitive impairment patients (MCI). We show that both HAMMER and FEM-Demons perform significantly better than an affine registration algorithm, FLIRT, at all three levels. At the global level, FEM-Demons outperforms HAMMER on the images of AD and MCI patients. At the local and anatomical levels, FEM-Demons and HAMMER dominate each other on different brain regions.
ISSN:1945-7928
1945-8452
DOI:10.1109/ISBI.2007.356917