FEATURE-BASED VS. INTENSITY-BASED BRAIN IMAGE REGISTRATION: COMPREHENSIVE COMPARISON USING MUTUAL INFORMATION
We propose a mutual information-based method for quantitative evaluation of the deformable registration algorithms at three levels: global, voxel-wise and anatomical structure. We compare two fully deformable registration algorithms: feature-based HAMMER and a set of intensity-based algorithms (FEM-...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We propose a mutual information-based method for quantitative evaluation of the deformable registration algorithms at three levels: global, voxel-wise and anatomical structure. We compare two fully deformable registration algorithms: feature-based HAMMER and a set of intensity-based algorithms (FEM-Demons) in the ITK package. Evaluation is carried out using the AAE template image with 116 labeled anatomical structures and a set of 59 MR brain images: 20 normal controls (CTE), 20 Alzheimer's disease patients (AD) and 19 mild cognitive impairment patients (MCI). We show that both HAMMER and FEM-Demons perform significantly better than an affine registration algorithm, FLIRT, at all three levels. At the global level, FEM-Demons outperforms HAMMER on the images of AD and MCI patients. At the local and anatomical levels, FEM-Demons and HAMMER dominate each other on different brain regions. |
---|---|
ISSN: | 1945-7928 1945-8452 |
DOI: | 10.1109/ISBI.2007.356917 |