A Novel Approach to Modeling Metal-Insulator-Metal Capacitors Over Vias With Significant Electrical Length
In monolithic-microwave integrated-circuit design, a metal-insulator-metal (MIM) capacitor is one of the key passive components. Some commonly used MIM capacitor models are optimized for series capacitor applications. These conventional models, however, face a challenge as a need for a shunt capacit...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on microwave theory and techniques 2007-04, Vol.55 (4), p.709-714 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In monolithic-microwave integrated-circuit design, a metal-insulator-metal (MIM) capacitor is one of the key passive components. Some commonly used MIM capacitor models are optimized for series capacitor applications. These conventional models, however, face a challenge as a need for a shunt capacitor application arises. This paper is a solution provider, ushering in a new approach to modeling a shunt capacitor of large electrical length over grounding substrate vias. Our model is derived from a set of design equations that allows asymmetric coupled lines in an inhomogeneous medium to be approximated to symmetric coupled lines in a homogeneous medium. Here we gain a theoretical insight into the rationale behind this approximation. The new approach benefits from: 1) a four-port implementation providing two connections to top and bottom plates and 2) a drastic reduction in mathematical complexity without trading off accuracy or compatibility. Circuit and electromagnetic simulations has proven to be in good agreement with measurements of a test structure of electrical length 558deg at 50 GHz |
---|---|
ISSN: | 0018-9480 1557-9670 |
DOI: | 10.1109/TMTT.2007.892810 |