LogTM-SE: Decoupling Hardware Transactional Memory from Caches
This paper proposes a hardware transactional memory (HTM) system called LogTM Signature Edition (LogTM-SE). LogTM-SE uses signatures to summarize a transactions read-and write-sets and detects conflicts on coherence requests (eager conflict detection). Transactions update memory "in place"...
Gespeichert in:
Hauptverfasser: | , , , , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper proposes a hardware transactional memory (HTM) system called LogTM Signature Edition (LogTM-SE). LogTM-SE uses signatures to summarize a transactions read-and write-sets and detects conflicts on coherence requests (eager conflict detection). Transactions update memory "in place" after saving the old value in a per-thread memory log (eager version management). Finally, a transaction commits locally by clearing its signature, resetting the log pointer, etc., while aborts must undo the log. LogTM-SE achieves two key benefits. First, signatures and logs can be implemented without changes to highly-optimized cache arrays because LogTM-SE never moves cached data, changes a blocks cache state, or flash clears bits in the cache. Second, transactions are more easily virtualized because signatures and logs are software accessible, allowing the operating system and runtime to save and restore this state. In particular, LogTM-SE allows cache victimization, unbounded nesting (both open and closed), thread context switching and migration, and paging |
---|---|
ISSN: | 1530-0897 2378-203X |
DOI: | 10.1109/HPCA.2007.346204 |