Variational Unsupervised Segmentation of Multi-Look Complex Polarimetric Images using a Wishart Observation Model

We address unsupervised variational segmentation of multi-look complex polarimetric images using a Wishart observation model via level sets. The methods consists of minimizing a functional containing an original data term derived from maximum likelihood Wishart approximation and a classical boundary...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Ayed, I. B., Mitiche, A., Belhadj, Z.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We address unsupervised variational segmentation of multi-look complex polarimetric images using a Wishart observation model via level sets. The methods consists of minimizing a functional containing an original data term derived from maximum likelihood Wishart approximation and a classical boundary length prior. The minimization is carried out efficiently by first order expansion of the data term and a new multiphase method which embeds a simple partition constraint directly in curve evolution. Results are shown on both synthetic and real images. Quantitative performance evaluation and comparisons with another method are also given.
ISSN:1522-4880
2381-8549
DOI:10.1109/ICIP.2006.312912