Perfect Sorting by Reversals Is Not Always Difficult

We propose new algorithms for computing pairwise rearrangement scenarios that conserve the combinatorial structure of genomes. More precisely, we investigate the problem of sorting signed permutations by reversals without breaking common intervals. We describe a combinatorial framework for this prob...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE/ACM transactions on computational biology and bioinformatics 2007-01, Vol.4 (1), p.4-16
Hauptverfasser: Berard, S., Bergeron, A., Chauve, C., Paul, C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose new algorithms for computing pairwise rearrangement scenarios that conserve the combinatorial structure of genomes. More precisely, we investigate the problem of sorting signed permutations by reversals without breaking common intervals. We describe a combinatorial framework for this problem that allows us to characterize classes of signed permutations for which one can compute, in polynomial time, a shortest reversal scenario that conserves all common intervals. In particular, we define a class of permutations for which this computation can be done in linear time with a very simple algorithm that does not rely on the classical Hannenhalli-Pevzner theory for sorting by reversals. We apply these methods to the computation of rearrangement scenarios between permutations obtained from 16 synteny blocks of the X chromosomes of the human, mouse, and rat
ISSN:1545-5963
1557-9964
DOI:10.1109/TCBB.2007.1011