Observability, Eigenvalues, and Kalman Filtering

In higher order Kalman filtering applications the analyst often has very little insight into the nature of the observability of the system. For example, there are situations where the filter may be estimating certain linear combinations of state variables quite well, but this is not apparent from a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on aerospace and electronic systems 1983-03, Vol.AES-19 (2), p.269-273
Hauptverfasser: Ham, Fredric M., Brown, R. Grover
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In higher order Kalman filtering applications the analyst often has very little insight into the nature of the observability of the system. For example, there are situations where the filter may be estimating certain linear combinations of state variables quite well, but this is not apparent from a glance at the error covariance matrix. It is shown here that the eigenvalues and eigenvectors of the error covariance matrix, when properly normalized, can provide useful information about the observability of the system.
ISSN:0018-9251
1557-9603
DOI:10.1109/TAES.1983.309446