Thin-Film Photovoltaic Radiation Testing for Space Applications
Although thin-film photovoltaic technology on lightweight flexible substrates has lower beginning-of-life efficiency compared to traditional single crystalline solar cells, it can offer advantages in high-specific power and low-stowed volume for power generation in space. To date, radiation testing...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Although thin-film photovoltaic technology on lightweight flexible substrates has lower beginning-of-life efficiency compared to traditional single crystalline solar cells, it can offer advantages in high-specific power and low-stowed volume for power generation in space. To date, radiation testing on thin-film solar cells has demonstrated superior radiation hardness compared to traditional crystalline solar cells. In addition, radiation induced damage in thin-film solar cells can be removed by annealing at temperatures readily achievable in space. Prior to deployment of this new technology for any mission, a more thorough understanding of its performance in the space environment will be required. The Aerospace Corporation has initiated a comprehensive study of thin-film solar cell performance in a simulated space radiation environment. A new testbed has been constructed to study the combined space environmental effect of proton irradiation and air mass zero light spectrum light soaking on a thin-film photovoltaic |
---|---|
ISSN: | 0160-8371 |
DOI: | 10.1109/WCPEC.2006.279861 |