Effect of Reentrant Twin Corners on Directional Solidification of Polycrystalline Silicon
The solidification microstructure and crystal orientation have been investigated for solar cell grade high purity polycrystalline silicon through a unidirectional solidification technique. In the solidification velocity range of 1.25-2.5times10 -6 m/s, the grain size enlarges as solidification progr...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The solidification microstructure and crystal orientation have been investigated for solar cell grade high purity polycrystalline silicon through a unidirectional solidification technique. In the solidification velocity range of 1.25-2.5times10 -6 m/s, the grain size enlarges as solidification progresses. Furthermore, large columnar grains contain many twin boundaries. However, in above the critical velocity around 40times10 -6 m/s, equiaxed structure appears. A model of two-dimensional nucleation on the reentrant corner was established, and the critical nucleus could be estimated to be 70 % to 80 % of the radius of the general two-dimensional nucleus. The reduction of the critical radius and undercooling on the reentrant corner could influence on the priority growth direction and the enlargement of the grain size |
---|---|
ISSN: | 0160-8371 |
DOI: | 10.1109/WCPEC.2006.279401 |