Efficient Nonlinear Bayesian Estimation based on Fourier Densities

Efficiently implementing nonlinear Bayesian estimators is still not a fully solved problem. For practical applications, a trade-off between estimation quality and demand on computational resources has to be found. In this paper, the use of nonnegative Fourier series, so-called Fourier densities, for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Brunn, D., Sawo, F., Hanebeck, U.D.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Efficiently implementing nonlinear Bayesian estimators is still not a fully solved problem. For practical applications, a trade-off between estimation quality and demand on computational resources has to be found. In this paper, the use of nonnegative Fourier series, so-called Fourier densities, for Bayesian estimation is proposed. By using the absolute square of Fourier series for the density representation, it is ensured that the density stays nonnegative. Nonetheless, approximation of arbitrary probability density functions can be made by using the Fourier integral formula. An efficient Bayesian estimator algorithm with constant complexity for nonnegative Fourier series is derived and demonstrated by means of an example
DOI:10.1109/MFI.2006.265642