Backtracking Algorithmic Complexity Attacks against a NIDS

Network Intrusion Detection Systems (NIDS) have become crucial to securing modern networks. To be effective, a NIDS must be able to counter evasion attempts and operate at or near wire-speed. Failure to do so allows malicious packets to slip through a NIDS undetected. In this paper, we explore NIDS...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Smith, Randy, Estan, Cristian, Jha, Somesh
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Network Intrusion Detection Systems (NIDS) have become crucial to securing modern networks. To be effective, a NIDS must be able to counter evasion attempts and operate at or near wire-speed. Failure to do so allows malicious packets to slip through a NIDS undetected. In this paper, we explore NIDS evasion through algorithmic complexity attacks. We present a highly effective attack against the Snort NIDS, and we provide a practical algorithmic solution that successfully thwarts the attack. This attack exploits the behavior of rule matching, yielding inspection times that are up to 1.5 million times slower than that of benign packets. Our analysis shows that this attack is applicable to many rules in Snorts ruleset, rendering vulnerable the thousands of networks protected by it. Our countermeasure confines the inspection time to within one order of magnitude of benign packets. Experimental results using a live system show that an attacker needs only 4.0 kbps of bandwidth to perpetually disable an unmodified NIDS, whereas all intrusions are detected when our countermeasure is used.
ISSN:1063-9527
DOI:10.1109/ACSAC.2006.17