Optimization of LDPC Codes for Receiver Frontends
The degree distribution of low-density parity-check (LDPC) codes is optimized for systems that iterate over the receiver frontend, e.g., soft detector, demodulator, equalizer, etc., and the LDPC decoder. The overall extrinsic information transfer (EXIT) function of an iterative LDPC decoder is compu...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The degree distribution of low-density parity-check (LDPC) codes is optimized for systems that iterate over the receiver frontend, e.g., soft detector, demodulator, equalizer, etc., and the LDPC decoder. The overall extrinsic information transfer (EXIT) function of an iterative LDPC decoder is computed, based on the code's own EXIT chart, under the Gaussian assumption. While the optimization of the variable node distribution is a nonlinear problem, the optimization of the check node distribution is shown to be a linear problem. This fact is exploited to design codes where both the variable and the check node distributions are optimized, resulting in more robust constructions. The technique presented requires only knowledge of the measured EXIT function of the receiver frontend |
---|---|
ISSN: | 2157-8095 2157-8117 |
DOI: | 10.1109/ISIT.2006.262016 |