Increasing the Performance of Cortically-Controlled Prostheses

Neural prostheses have received considerable attention due to their potential to dramatically improve the quality of life of severely disabled patients. Cortically-controlled prostheses are able to translate neural activity from cerebral cortex into control signals for guiding computer cursors or pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2006 International Conference of the IEEE Engineering in Medicine and Biology Society 2006, Vol.Supplement, p.6652-6656
Hauptverfasser: Shenoy, Krishna V., Santhanam, Teresa H., Ryu, Stephen I., Afshar, Afsheen, Yu, Byron M., Gilja, Vikash, Linderman, Michael D., Kalmar, Rachel S., Cunningham, John P., Kemere, Caleb T., Batista, Aaron P., Churchland, Mark M., Meng, Teresa H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6656
container_issue
container_start_page 6652
container_title 2006 International Conference of the IEEE Engineering in Medicine and Biology Society
container_volume Supplement
creator Shenoy, Krishna V.
Santhanam, Teresa H.
Ryu, Stephen I.
Afshar, Afsheen
Yu, Byron M.
Gilja, Vikash
Linderman, Michael D.
Kalmar, Rachel S.
Cunningham, John P.
Kemere, Caleb T.
Batista, Aaron P.
Churchland, Mark M.
Meng, Teresa H.
description Neural prostheses have received considerable attention due to their potential to dramatically improve the quality of life of severely disabled patients. Cortically-controlled prostheses are able to translate neural activity from cerebral cortex into control signals for guiding computer cursors or prosthetic limbs. Non-invasive and invasive electrode techniques can be used to measure neural activity, with the latter promising considerably higher levels of performance and therefore functionality to patients. We review here some of our recent experimental and computational work aimed at establishing a principled design methodology to increase electrodebased cortical prosthesis performance to near theoretical limits. Studies discussed include translating unprecedentedly brief periods of “plan” activity into high information rate (6.5 bits/s) control signals, improving decode algorithms and optimizing visual target locations for further performance increases, and recording from chronically implanted arrays in freely behaving monkeys to characterize neuron stability. Taken together, these results should substantially increase the clinical viability of cortical prostheses.
doi_str_mv 10.1109/IEMBS.2006.260912
format Article
fullrecord <record><control><sourceid>proquest_6IE</sourceid><recordid>TN_cdi_ieee_primary_4030623</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4030623</ieee_id><sourcerecordid>68399677</sourcerecordid><originalsourceid>FETCH-LOGICAL-i2572-ef3ae365313da4583f361df169264c10979a3a2734150e2bab49c1b0cae22be53</originalsourceid><addsrcrecordid>eNo9z81Kw0AUBeABFVtqH0AEycpd6szc-elsBA1VCxULKrgLk8mNRpJMnUkXffsGWr2buzgfBw4hl4zOGKPmdrl4eXibcUrVjCtqGD8hU6PnTHAhKAUuTsmYSalTpunniExj_KHDgRlifk5GTBtphNZjcrfsXEAb6-4r6b8xWWOofGht5zDxVZL50NfONs0uzXzXB980WCbr4OOAI8YLclbZJuL0-Cfk43Hxnj2nq9enZXa_SmsuNU-xAougJDAorZBzqECxsmLKcCXcsEgbC5ZrEExS5IUthHGsoM4i5wVKmJCbQ-8m-N8txj5v6-iwaWyHfhtzNQdjlNYDvD7CbdFimW9C3dqwy_8WD-DqAGpE_I8FBao4wB5IzmJM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>68399677</pqid></control><display><type>article</type><title>Increasing the Performance of Cortically-Controlled Prostheses</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Shenoy, Krishna V. ; Santhanam, Teresa H. ; Ryu, Stephen I. ; Afshar, Afsheen ; Yu, Byron M. ; Gilja, Vikash ; Linderman, Michael D. ; Kalmar, Rachel S. ; Cunningham, John P. ; Kemere, Caleb T. ; Batista, Aaron P. ; Churchland, Mark M. ; Meng, Teresa H.</creator><creatorcontrib>Shenoy, Krishna V. ; Santhanam, Teresa H. ; Ryu, Stephen I. ; Afshar, Afsheen ; Yu, Byron M. ; Gilja, Vikash ; Linderman, Michael D. ; Kalmar, Rachel S. ; Cunningham, John P. ; Kemere, Caleb T. ; Batista, Aaron P. ; Churchland, Mark M. ; Meng, Teresa H.</creatorcontrib><description>Neural prostheses have received considerable attention due to their potential to dramatically improve the quality of life of severely disabled patients. Cortically-controlled prostheses are able to translate neural activity from cerebral cortex into control signals for guiding computer cursors or prosthetic limbs. Non-invasive and invasive electrode techniques can be used to measure neural activity, with the latter promising considerably higher levels of performance and therefore functionality to patients. We review here some of our recent experimental and computational work aimed at establishing a principled design methodology to increase electrodebased cortical prosthesis performance to near theoretical limits. Studies discussed include translating unprecedentedly brief periods of “plan” activity into high information rate (6.5 bits/s) control signals, improving decode algorithms and optimizing visual target locations for further performance increases, and recording from chronically implanted arrays in freely behaving monkeys to characterize neuron stability. Taken together, these results should substantially increase the clinical viability of cortical prostheses.</description><identifier>ISSN: 1557-170X</identifier><identifier>ISBN: 9781424400324</identifier><identifier>ISBN: 1424400325</identifier><identifier>DOI: 10.1109/IEMBS.2006.260912</identifier><identifier>PMID: 17959477</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Animals ; Artificial Limbs ; Brain-computer interface ; brain-machine interface ; Central nervous system ; Cerebral Cortex - physiology ; Communication system control ; Decoding ; Design methodology ; Electrodes ; Electrodes, Implanted ; Macaca mulatta ; Medical treatment ; neural prostheses ; Neural prosthesis ; Neurons ; premotor cortex ; Prosthesis Design ; Prosthetics ; USA Councils ; User-Computer Interface</subject><ispartof>2006 International Conference of the IEEE Engineering in Medicine and Biology Society, 2006, Vol.Supplement, p.6652-6656</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4030623$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,4036,4037,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4030623$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17959477$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shenoy, Krishna V.</creatorcontrib><creatorcontrib>Santhanam, Teresa H.</creatorcontrib><creatorcontrib>Ryu, Stephen I.</creatorcontrib><creatorcontrib>Afshar, Afsheen</creatorcontrib><creatorcontrib>Yu, Byron M.</creatorcontrib><creatorcontrib>Gilja, Vikash</creatorcontrib><creatorcontrib>Linderman, Michael D.</creatorcontrib><creatorcontrib>Kalmar, Rachel S.</creatorcontrib><creatorcontrib>Cunningham, John P.</creatorcontrib><creatorcontrib>Kemere, Caleb T.</creatorcontrib><creatorcontrib>Batista, Aaron P.</creatorcontrib><creatorcontrib>Churchland, Mark M.</creatorcontrib><creatorcontrib>Meng, Teresa H.</creatorcontrib><title>Increasing the Performance of Cortically-Controlled Prostheses</title><title>2006 International Conference of the IEEE Engineering in Medicine and Biology Society</title><addtitle>IEMBS</addtitle><addtitle>Conf Proc IEEE Eng Med Biol Soc</addtitle><description>Neural prostheses have received considerable attention due to their potential to dramatically improve the quality of life of severely disabled patients. Cortically-controlled prostheses are able to translate neural activity from cerebral cortex into control signals for guiding computer cursors or prosthetic limbs. Non-invasive and invasive electrode techniques can be used to measure neural activity, with the latter promising considerably higher levels of performance and therefore functionality to patients. We review here some of our recent experimental and computational work aimed at establishing a principled design methodology to increase electrodebased cortical prosthesis performance to near theoretical limits. Studies discussed include translating unprecedentedly brief periods of “plan” activity into high information rate (6.5 bits/s) control signals, improving decode algorithms and optimizing visual target locations for further performance increases, and recording from chronically implanted arrays in freely behaving monkeys to characterize neuron stability. Taken together, these results should substantially increase the clinical viability of cortical prostheses.</description><subject>Algorithms</subject><subject>Animals</subject><subject>Artificial Limbs</subject><subject>Brain-computer interface</subject><subject>brain-machine interface</subject><subject>Central nervous system</subject><subject>Cerebral Cortex - physiology</subject><subject>Communication system control</subject><subject>Decoding</subject><subject>Design methodology</subject><subject>Electrodes</subject><subject>Electrodes, Implanted</subject><subject>Macaca mulatta</subject><subject>Medical treatment</subject><subject>neural prostheses</subject><subject>Neural prosthesis</subject><subject>Neurons</subject><subject>premotor cortex</subject><subject>Prosthesis Design</subject><subject>Prosthetics</subject><subject>USA Councils</subject><subject>User-Computer Interface</subject><issn>1557-170X</issn><isbn>9781424400324</isbn><isbn>1424400325</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNo9z81Kw0AUBeABFVtqH0AEycpd6szc-elsBA1VCxULKrgLk8mNRpJMnUkXffsGWr2buzgfBw4hl4zOGKPmdrl4eXibcUrVjCtqGD8hU6PnTHAhKAUuTsmYSalTpunniExj_KHDgRlifk5GTBtphNZjcrfsXEAb6-4r6b8xWWOofGht5zDxVZL50NfONs0uzXzXB980WCbr4OOAI8YLclbZJuL0-Cfk43Hxnj2nq9enZXa_SmsuNU-xAougJDAorZBzqECxsmLKcCXcsEgbC5ZrEExS5IUthHGsoM4i5wVKmJCbQ-8m-N8txj5v6-iwaWyHfhtzNQdjlNYDvD7CbdFimW9C3dqwy_8WD-DqAGpE_I8FBao4wB5IzmJM</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Shenoy, Krishna V.</creator><creator>Santhanam, Teresa H.</creator><creator>Ryu, Stephen I.</creator><creator>Afshar, Afsheen</creator><creator>Yu, Byron M.</creator><creator>Gilja, Vikash</creator><creator>Linderman, Michael D.</creator><creator>Kalmar, Rachel S.</creator><creator>Cunningham, John P.</creator><creator>Kemere, Caleb T.</creator><creator>Batista, Aaron P.</creator><creator>Churchland, Mark M.</creator><creator>Meng, Teresa H.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>2006</creationdate><title>Increasing the Performance of Cortically-Controlled Prostheses</title><author>Shenoy, Krishna V. ; Santhanam, Teresa H. ; Ryu, Stephen I. ; Afshar, Afsheen ; Yu, Byron M. ; Gilja, Vikash ; Linderman, Michael D. ; Kalmar, Rachel S. ; Cunningham, John P. ; Kemere, Caleb T. ; Batista, Aaron P. ; Churchland, Mark M. ; Meng, Teresa H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i2572-ef3ae365313da4583f361df169264c10979a3a2734150e2bab49c1b0cae22be53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Algorithms</topic><topic>Animals</topic><topic>Artificial Limbs</topic><topic>Brain-computer interface</topic><topic>brain-machine interface</topic><topic>Central nervous system</topic><topic>Cerebral Cortex - physiology</topic><topic>Communication system control</topic><topic>Decoding</topic><topic>Design methodology</topic><topic>Electrodes</topic><topic>Electrodes, Implanted</topic><topic>Macaca mulatta</topic><topic>Medical treatment</topic><topic>neural prostheses</topic><topic>Neural prosthesis</topic><topic>Neurons</topic><topic>premotor cortex</topic><topic>Prosthesis Design</topic><topic>Prosthetics</topic><topic>USA Councils</topic><topic>User-Computer Interface</topic><toplevel>online_resources</toplevel><creatorcontrib>Shenoy, Krishna V.</creatorcontrib><creatorcontrib>Santhanam, Teresa H.</creatorcontrib><creatorcontrib>Ryu, Stephen I.</creatorcontrib><creatorcontrib>Afshar, Afsheen</creatorcontrib><creatorcontrib>Yu, Byron M.</creatorcontrib><creatorcontrib>Gilja, Vikash</creatorcontrib><creatorcontrib>Linderman, Michael D.</creatorcontrib><creatorcontrib>Kalmar, Rachel S.</creatorcontrib><creatorcontrib>Cunningham, John P.</creatorcontrib><creatorcontrib>Kemere, Caleb T.</creatorcontrib><creatorcontrib>Batista, Aaron P.</creatorcontrib><creatorcontrib>Churchland, Mark M.</creatorcontrib><creatorcontrib>Meng, Teresa H.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>2006 International Conference of the IEEE Engineering in Medicine and Biology Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Shenoy, Krishna V.</au><au>Santhanam, Teresa H.</au><au>Ryu, Stephen I.</au><au>Afshar, Afsheen</au><au>Yu, Byron M.</au><au>Gilja, Vikash</au><au>Linderman, Michael D.</au><au>Kalmar, Rachel S.</au><au>Cunningham, John P.</au><au>Kemere, Caleb T.</au><au>Batista, Aaron P.</au><au>Churchland, Mark M.</au><au>Meng, Teresa H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Increasing the Performance of Cortically-Controlled Prostheses</atitle><jtitle>2006 International Conference of the IEEE Engineering in Medicine and Biology Society</jtitle><stitle>IEMBS</stitle><addtitle>Conf Proc IEEE Eng Med Biol Soc</addtitle><date>2006</date><risdate>2006</risdate><volume>Supplement</volume><spage>6652</spage><epage>6656</epage><pages>6652-6656</pages><issn>1557-170X</issn><isbn>9781424400324</isbn><isbn>1424400325</isbn><abstract>Neural prostheses have received considerable attention due to their potential to dramatically improve the quality of life of severely disabled patients. Cortically-controlled prostheses are able to translate neural activity from cerebral cortex into control signals for guiding computer cursors or prosthetic limbs. Non-invasive and invasive electrode techniques can be used to measure neural activity, with the latter promising considerably higher levels of performance and therefore functionality to patients. We review here some of our recent experimental and computational work aimed at establishing a principled design methodology to increase electrodebased cortical prosthesis performance to near theoretical limits. Studies discussed include translating unprecedentedly brief periods of “plan” activity into high information rate (6.5 bits/s) control signals, improving decode algorithms and optimizing visual target locations for further performance increases, and recording from chronically implanted arrays in freely behaving monkeys to characterize neuron stability. Taken together, these results should substantially increase the clinical viability of cortical prostheses.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>17959477</pmid><doi>10.1109/IEMBS.2006.260912</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1557-170X
ispartof 2006 International Conference of the IEEE Engineering in Medicine and Biology Society, 2006, Vol.Supplement, p.6652-6656
issn 1557-170X
language eng
recordid cdi_ieee_primary_4030623
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Algorithms
Animals
Artificial Limbs
Brain-computer interface
brain-machine interface
Central nervous system
Cerebral Cortex - physiology
Communication system control
Decoding
Design methodology
Electrodes
Electrodes, Implanted
Macaca mulatta
Medical treatment
neural prostheses
Neural prosthesis
Neurons
premotor cortex
Prosthesis Design
Prosthetics
USA Councils
User-Computer Interface
title Increasing the Performance of Cortically-Controlled Prostheses
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T06%3A21%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Increasing%20the%20Performance%20of%20Cortically-Controlled%20Prostheses&rft.jtitle=2006%20International%20Conference%20of%20the%20IEEE%20Engineering%20in%20Medicine%20and%20Biology%20Society&rft.au=Shenoy,%20Krishna%20V.&rft.date=2006&rft.volume=Supplement&rft.spage=6652&rft.epage=6656&rft.pages=6652-6656&rft.issn=1557-170X&rft.isbn=9781424400324&rft.isbn_list=1424400325&rft_id=info:doi/10.1109/IEMBS.2006.260912&rft_dat=%3Cproquest_6IE%3E68399677%3C/proquest_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=68399677&rft_id=info:pmid/17959477&rft_ieee_id=4030623&rfr_iscdi=true