Increasing the Performance of Cortically-Controlled Prostheses

Neural prostheses have received considerable attention due to their potential to dramatically improve the quality of life of severely disabled patients. Cortically-controlled prostheses are able to translate neural activity from cerebral cortex into control signals for guiding computer cursors or pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2006 International Conference of the IEEE Engineering in Medicine and Biology Society 2006, Vol.Supplement, p.6652-6656
Hauptverfasser: Shenoy, Krishna V., Santhanam, Teresa H., Ryu, Stephen I., Afshar, Afsheen, Yu, Byron M., Gilja, Vikash, Linderman, Michael D., Kalmar, Rachel S., Cunningham, John P., Kemere, Caleb T., Batista, Aaron P., Churchland, Mark M., Meng, Teresa H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Neural prostheses have received considerable attention due to their potential to dramatically improve the quality of life of severely disabled patients. Cortically-controlled prostheses are able to translate neural activity from cerebral cortex into control signals for guiding computer cursors or prosthetic limbs. Non-invasive and invasive electrode techniques can be used to measure neural activity, with the latter promising considerably higher levels of performance and therefore functionality to patients. We review here some of our recent experimental and computational work aimed at establishing a principled design methodology to increase electrodebased cortical prosthesis performance to near theoretical limits. Studies discussed include translating unprecedentedly brief periods of “plan” activity into high information rate (6.5 bits/s) control signals, improving decode algorithms and optimizing visual target locations for further performance increases, and recording from chronically implanted arrays in freely behaving monkeys to characterize neuron stability. Taken together, these results should substantially increase the clinical viability of cortical prostheses.
ISSN:1557-170X
DOI:10.1109/IEMBS.2006.260912