Subspace Hierarchical Particle Filter

Particle filtering has become a standard tool for non-parametric estimation in computer vision tracking applications. It is an instance of stochastic search. Each particle represents a possible state of the system. Higher concentration of particles at any given region of the search space implies hig...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Brandao, B.C., Wainer, J., Goldenstein, S.K.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Particle filtering has become a standard tool for non-parametric estimation in computer vision tracking applications. It is an instance of stochastic search. Each particle represents a possible state of the system. Higher concentration of particles at any given region of the search space implies higher probabilities. One of its major drawbacks is the exponential growth in the number of particles for increasing dimensions in the search space. We present a graph based filtering framework for hierarchical model tracking that is capable of substantially alleviate this issue. The method relies on dividing the search space in subspaces that can be estimated separately. Low correlated subspaces may be estimated with parallel, or serial, filters and have their probability distributions combined by a special aggregator filter. We describe a new algorithm to extract parameter groups, which define the subspaces, from the system model. We validate our method with different graph structures within a simple hand tracking experiment with both synthetic and real data
ISSN:1530-1834
2377-5416
DOI:10.1109/SIBGRAPI.2006.42