Discovering DNA Motifs with Nucleotide Dependency
The problem of finding motifs of binding sites is very important to the understanding of gene regulatory networks. Motifs are generally represented by matrices (PWM or PSSM) or strings. However, these representations cannot model biological binding sites well because they fail to capture nucleotide...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The problem of finding motifs of binding sites is very important to the understanding of gene regulatory networks. Motifs are generally represented by matrices (PWM or PSSM) or strings. However, these representations cannot model biological binding sites well because they fail to capture nucleotide interdependence. It has been pointed out by many researchers that the nucleotides of the DNA binding site cannot be treated independently, e.g. the binding of zinc finger in proteins. In this paper, a new representation called Scored Position Specific Pattern (SPSP), which is a generalization of the matrix and string representations, is introduced which takes into consideration the dependent occurrences of neighboring nucleotides. Even though the problem of finding the optimal motif in SPSP representation is proved to be NP-hard, we introduce a heuristic algorithm called SPSP-Finder, which can effectively find optimal motifs in most simulated cases and some real cases for which existing popular motif-finding software, such as MEME and AlignACE fail |
---|---|
DOI: | 10.1109/BIBE.2006.253318 |