Blind Deconvolution Using a Variational Approach to Parameter, Image, and Blur Estimation

Following the hierarchical Bayesian framework for blind deconvolution problems, in this paper, we propose the use of simultaneous autoregressions as prior distributions for both the image and blur, and gamma distributions for the unknown parameters (hyperparameters) of the priors and the image forma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing 2006-12, Vol.15 (12), p.3715-3727
Hauptverfasser: Molina, R., Mateos, J., Katsaggelos, A.K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Following the hierarchical Bayesian framework for blind deconvolution problems, in this paper, we propose the use of simultaneous autoregressions as prior distributions for both the image and blur, and gamma distributions for the unknown parameters (hyperparameters) of the priors and the image formation noise. We show how the gamma distributions on the unknown hyperparameters can be used to prevent the proposed blind deconvolution method from converging to undesirable image and blur estimates and also how these distributions can be inferred in realistic situations. We apply variational methods to approximate the posterior probability of the unknown image, blur, and hyperparameters and propose two different approximations of the posterior distribution. One of these approximations coincides with a classical blind deconvolution method. The proposed algorithms are tested experimentally and compared with existing blind deconvolution methods
ISSN:1057-7149
1941-0042
DOI:10.1109/TIP.2006.881972