Noise canceling with autoassociative memory trained by order statistics

In this paper, noise canceling using an autoassociative memory is considered for possible applications to constant signal detection. The authors use order statistics to help the neural network learn the noise characteristics. In essence, the performance of this neural network is shown to not depend...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Jinsoo Bae, Young Kwon Ryu, Iickho Song
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, noise canceling using an autoassociative memory is considered for possible applications to constant signal detection. The authors use order statistics to help the neural network learn the noise characteristics. In essence, the performance of this neural network is shown to not depend on the distribution of noise, based on simulations for six well known noise probability density functions.< >
DOI:10.1109/ICNN.1994.374788