Decision-based neural networks with signal/image classification applications

Supervised learning networks based on a decision-based formulation are explored. More specifically, a decision-based neural network (DBNN) is proposed, which combines the perceptron-like learning rule and hierarchical nonlinear network structure. The decision-based mutual training can be applied to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on neural networks 1995-01, Vol.6 (1), p.170-181
Hauptverfasser: Kung, S.Y., Taur, J.S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Supervised learning networks based on a decision-based formulation are explored. More specifically, a decision-based neural network (DBNN) is proposed, which combines the perceptron-like learning rule and hierarchical nonlinear network structure. The decision-based mutual training can be applied to both static and temporal pattern recognition problems. For static pattern recognition, two hierarchical structures are proposed: hidden-node and subcluster structures. The relationships between DBNN's and other models (linear perceptron, piecewise-linear perceptron, LVQ, and PNN) are discussed. As to temporal DBNN's, model-based discriminant functions may be chosen to compensate possible temporal variations, such as waveform warping and alignments. Typical examples include DTW distance, prediction error, or likelihood functions. For classification applications, DBNN's are very effective in computation time and performance. This is confirmed by simulations conducted for several applications, including texture classification, OCR, and ECG analysis.< >
ISSN:1045-9227
1941-0093
DOI:10.1109/72.363439