Spatial soliton deflection mechanism indicated by FD-TD Maxwell's equations modeling

We present first-time calculations from the time-domain vector Maxwell's equations of spatial optical soliton propagation and mutual deflection, including carrier waves, in a 2-D homogeneous Kerr-type nonlinear dielectric. The nonlinear Schrodinger equation predicts that two co-propagating, in-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE photonics technology letters 1994-10, Vol.6 (10), p.1251-1254
Hauptverfasser: Joseph, R.M., Taflove, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1254
container_issue 10
container_start_page 1251
container_title IEEE photonics technology letters
container_volume 6
creator Joseph, R.M.
Taflove, A.
description We present first-time calculations from the time-domain vector Maxwell's equations of spatial optical soliton propagation and mutual deflection, including carrier waves, in a 2-D homogeneous Kerr-type nonlinear dielectric. The nonlinear Schrodinger equation predicts that two co-propagating, in-phase spatial solitons remain bound to each other, executing a periodic separation. This disagrees with our new extensively tested finite-difference time-domain (FD-TD) solution of Maxwell's equations. FD-TD shows that co-propagating in-phase spatial solitons become unbound, i.e. diverge to arbitrarily large separations, if the ratio of soliton beamwidth to wavelength is order 1 or less. Not relying upon paraxial approximations or analogies to temporal soliton interactions, FD-TD appears to be a robust means of obtaining detailed models of the interaction of sub-picosecond pulsed light beams in nonlinear media directly in the space-time domain.< >
doi_str_mv 10.1109/68.329654
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_329654</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>329654</ieee_id><sourcerecordid>28614107</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-4364b405a88ee14136ed592433fba5063b611a5a9289443a55b7fdcb64f4a9143</originalsourceid><addsrcrecordid>eNpFkD1PwzAQhi0EEqUwsDJ5QCCGFDv-SDKilgJSEQNlji7OBYycpI1T0f57XKWC6V7pnnt0egm55GzCOcvudToRcaaVPCIjnkkeMZ7I45BZyJwLdUrOvP9mjEsl5Igs31fQW3DUt872bUNLrBya3oZYo_mCxvqa2qa0BnosabGj81m0nNFX2P6gc7ee4noDe97Tui3R2ebznJxU4DxeHOaYfMwfl9PnaPH29DJ9WERGJHEfSaFlIZmCNEXkkguNpcpiKURVgGJaFJpzUJDFaSalAKWKpCpNoWUlIeNSjMnN4F117XqDvs9r6034ChpsNz6PUx20LAng3QCarvW-wypfdbaGbpdzlu97y3WaD70F9vogBW_AVR00xvq_AxH-TJI0YFcDZhHxfzs4fgE273PB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28614107</pqid></control><display><type>article</type><title>Spatial soliton deflection mechanism indicated by FD-TD Maxwell's equations modeling</title><source>IEEE Electronic Library (IEL)</source><creator>Joseph, R.M. ; Taflove, A.</creator><creatorcontrib>Joseph, R.M. ; Taflove, A.</creatorcontrib><description>We present first-time calculations from the time-domain vector Maxwell's equations of spatial optical soliton propagation and mutual deflection, including carrier waves, in a 2-D homogeneous Kerr-type nonlinear dielectric. The nonlinear Schrodinger equation predicts that two co-propagating, in-phase spatial solitons remain bound to each other, executing a periodic separation. This disagrees with our new extensively tested finite-difference time-domain (FD-TD) solution of Maxwell's equations. FD-TD shows that co-propagating in-phase spatial solitons become unbound, i.e. diverge to arbitrarily large separations, if the ratio of soliton beamwidth to wavelength is order 1 or less. Not relying upon paraxial approximations or analogies to temporal soliton interactions, FD-TD appears to be a robust means of obtaining detailed models of the interaction of sub-picosecond pulsed light beams in nonlinear media directly in the space-time domain.&lt; &gt;</description><identifier>ISSN: 1041-1135</identifier><identifier>EISSN: 1941-0174</identifier><identifier>DOI: 10.1109/68.329654</identifier><identifier>CODEN: IPTLEL</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Circuit properties ; Dielectrics ; Electric, optical and optoelectronic circuits ; Electromagnetic fields ; Electromagnetic propagation ; Electronics ; Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Maxwell equations ; Miscellaneous ; Nonlinear equations ; Nonlinear optics ; Numerical models ; Optical and optoelectronic circuits ; Optical propagation ; Optical solitons ; Optical solitons; nonlinear guided waves ; Optics ; Physics ; Predictive models ; Time domain analysis</subject><ispartof>IEEE photonics technology letters, 1994-10, Vol.6 (10), p.1251-1254</ispartof><rights>1995 INIST-CNRS</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-4364b405a88ee14136ed592433fba5063b611a5a9289443a55b7fdcb64f4a9143</citedby><cites>FETCH-LOGICAL-c372t-4364b405a88ee14136ed592433fba5063b611a5a9289443a55b7fdcb64f4a9143</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/329654$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/329654$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=3413778$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Joseph, R.M.</creatorcontrib><creatorcontrib>Taflove, A.</creatorcontrib><title>Spatial soliton deflection mechanism indicated by FD-TD Maxwell's equations modeling</title><title>IEEE photonics technology letters</title><addtitle>LPT</addtitle><description>We present first-time calculations from the time-domain vector Maxwell's equations of spatial optical soliton propagation and mutual deflection, including carrier waves, in a 2-D homogeneous Kerr-type nonlinear dielectric. The nonlinear Schrodinger equation predicts that two co-propagating, in-phase spatial solitons remain bound to each other, executing a periodic separation. This disagrees with our new extensively tested finite-difference time-domain (FD-TD) solution of Maxwell's equations. FD-TD shows that co-propagating in-phase spatial solitons become unbound, i.e. diverge to arbitrarily large separations, if the ratio of soliton beamwidth to wavelength is order 1 or less. Not relying upon paraxial approximations or analogies to temporal soliton interactions, FD-TD appears to be a robust means of obtaining detailed models of the interaction of sub-picosecond pulsed light beams in nonlinear media directly in the space-time domain.&lt; &gt;</description><subject>Applied sciences</subject><subject>Circuit properties</subject><subject>Dielectrics</subject><subject>Electric, optical and optoelectronic circuits</subject><subject>Electromagnetic fields</subject><subject>Electromagnetic propagation</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Maxwell equations</subject><subject>Miscellaneous</subject><subject>Nonlinear equations</subject><subject>Nonlinear optics</subject><subject>Numerical models</subject><subject>Optical and optoelectronic circuits</subject><subject>Optical propagation</subject><subject>Optical solitons</subject><subject>Optical solitons; nonlinear guided waves</subject><subject>Optics</subject><subject>Physics</subject><subject>Predictive models</subject><subject>Time domain analysis</subject><issn>1041-1135</issn><issn>1941-0174</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><recordid>eNpFkD1PwzAQhi0EEqUwsDJ5QCCGFDv-SDKilgJSEQNlji7OBYycpI1T0f57XKWC6V7pnnt0egm55GzCOcvudToRcaaVPCIjnkkeMZ7I45BZyJwLdUrOvP9mjEsl5Igs31fQW3DUt872bUNLrBya3oZYo_mCxvqa2qa0BnosabGj81m0nNFX2P6gc7ee4noDe97Tui3R2ebznJxU4DxeHOaYfMwfl9PnaPH29DJ9WERGJHEfSaFlIZmCNEXkkguNpcpiKURVgGJaFJpzUJDFaSalAKWKpCpNoWUlIeNSjMnN4F117XqDvs9r6034ChpsNz6PUx20LAng3QCarvW-wypfdbaGbpdzlu97y3WaD70F9vogBW_AVR00xvq_AxH-TJI0YFcDZhHxfzs4fgE273PB</recordid><startdate>19941001</startdate><enddate>19941001</enddate><creator>Joseph, R.M.</creator><creator>Taflove, A.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>19941001</creationdate><title>Spatial soliton deflection mechanism indicated by FD-TD Maxwell's equations modeling</title><author>Joseph, R.M. ; Taflove, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-4364b405a88ee14136ed592433fba5063b611a5a9289443a55b7fdcb64f4a9143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><topic>Applied sciences</topic><topic>Circuit properties</topic><topic>Dielectrics</topic><topic>Electric, optical and optoelectronic circuits</topic><topic>Electromagnetic fields</topic><topic>Electromagnetic propagation</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Maxwell equations</topic><topic>Miscellaneous</topic><topic>Nonlinear equations</topic><topic>Nonlinear optics</topic><topic>Numerical models</topic><topic>Optical and optoelectronic circuits</topic><topic>Optical propagation</topic><topic>Optical solitons</topic><topic>Optical solitons; nonlinear guided waves</topic><topic>Optics</topic><topic>Physics</topic><topic>Predictive models</topic><topic>Time domain analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Joseph, R.M.</creatorcontrib><creatorcontrib>Taflove, A.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE photonics technology letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Joseph, R.M.</au><au>Taflove, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spatial soliton deflection mechanism indicated by FD-TD Maxwell's equations modeling</atitle><jtitle>IEEE photonics technology letters</jtitle><stitle>LPT</stitle><date>1994-10-01</date><risdate>1994</risdate><volume>6</volume><issue>10</issue><spage>1251</spage><epage>1254</epage><pages>1251-1254</pages><issn>1041-1135</issn><eissn>1941-0174</eissn><coden>IPTLEL</coden><abstract>We present first-time calculations from the time-domain vector Maxwell's equations of spatial optical soliton propagation and mutual deflection, including carrier waves, in a 2-D homogeneous Kerr-type nonlinear dielectric. The nonlinear Schrodinger equation predicts that two co-propagating, in-phase spatial solitons remain bound to each other, executing a periodic separation. This disagrees with our new extensively tested finite-difference time-domain (FD-TD) solution of Maxwell's equations. FD-TD shows that co-propagating in-phase spatial solitons become unbound, i.e. diverge to arbitrarily large separations, if the ratio of soliton beamwidth to wavelength is order 1 or less. Not relying upon paraxial approximations or analogies to temporal soliton interactions, FD-TD appears to be a robust means of obtaining detailed models of the interaction of sub-picosecond pulsed light beams in nonlinear media directly in the space-time domain.&lt; &gt;</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/68.329654</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1041-1135
ispartof IEEE photonics technology letters, 1994-10, Vol.6 (10), p.1251-1254
issn 1041-1135
1941-0174
language eng
recordid cdi_ieee_primary_329654
source IEEE Electronic Library (IEL)
subjects Applied sciences
Circuit properties
Dielectrics
Electric, optical and optoelectronic circuits
Electromagnetic fields
Electromagnetic propagation
Electronics
Exact sciences and technology
Fundamental areas of phenomenology (including applications)
Maxwell equations
Miscellaneous
Nonlinear equations
Nonlinear optics
Numerical models
Optical and optoelectronic circuits
Optical propagation
Optical solitons
Optical solitons
nonlinear guided waves
Optics
Physics
Predictive models
Time domain analysis
title Spatial soliton deflection mechanism indicated by FD-TD Maxwell's equations modeling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T15%3A28%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spatial%20soliton%20deflection%20mechanism%20indicated%20by%20FD-TD%20Maxwell's%20equations%20modeling&rft.jtitle=IEEE%20photonics%20technology%20letters&rft.au=Joseph,%20R.M.&rft.date=1994-10-01&rft.volume=6&rft.issue=10&rft.spage=1251&rft.epage=1254&rft.pages=1251-1254&rft.issn=1041-1135&rft.eissn=1941-0174&rft.coden=IPTLEL&rft_id=info:doi/10.1109/68.329654&rft_dat=%3Cproquest_RIE%3E28614107%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28614107&rft_id=info:pmid/&rft_ieee_id=329654&rfr_iscdi=true