Spatial soliton deflection mechanism indicated by FD-TD Maxwell's equations modeling
We present first-time calculations from the time-domain vector Maxwell's equations of spatial optical soliton propagation and mutual deflection, including carrier waves, in a 2-D homogeneous Kerr-type nonlinear dielectric. The nonlinear Schrodinger equation predicts that two co-propagating, in-...
Gespeichert in:
Veröffentlicht in: | IEEE photonics technology letters 1994-10, Vol.6 (10), p.1251-1254 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1254 |
---|---|
container_issue | 10 |
container_start_page | 1251 |
container_title | IEEE photonics technology letters |
container_volume | 6 |
creator | Joseph, R.M. Taflove, A. |
description | We present first-time calculations from the time-domain vector Maxwell's equations of spatial optical soliton propagation and mutual deflection, including carrier waves, in a 2-D homogeneous Kerr-type nonlinear dielectric. The nonlinear Schrodinger equation predicts that two co-propagating, in-phase spatial solitons remain bound to each other, executing a periodic separation. This disagrees with our new extensively tested finite-difference time-domain (FD-TD) solution of Maxwell's equations. FD-TD shows that co-propagating in-phase spatial solitons become unbound, i.e. diverge to arbitrarily large separations, if the ratio of soliton beamwidth to wavelength is order 1 or less. Not relying upon paraxial approximations or analogies to temporal soliton interactions, FD-TD appears to be a robust means of obtaining detailed models of the interaction of sub-picosecond pulsed light beams in nonlinear media directly in the space-time domain.< > |
doi_str_mv | 10.1109/68.329654 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_329654</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>329654</ieee_id><sourcerecordid>28614107</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-4364b405a88ee14136ed592433fba5063b611a5a9289443a55b7fdcb64f4a9143</originalsourceid><addsrcrecordid>eNpFkD1PwzAQhi0EEqUwsDJ5QCCGFDv-SDKilgJSEQNlji7OBYycpI1T0f57XKWC6V7pnnt0egm55GzCOcvudToRcaaVPCIjnkkeMZ7I45BZyJwLdUrOvP9mjEsl5Igs31fQW3DUt872bUNLrBya3oZYo_mCxvqa2qa0BnosabGj81m0nNFX2P6gc7ee4noDe97Tui3R2ebznJxU4DxeHOaYfMwfl9PnaPH29DJ9WERGJHEfSaFlIZmCNEXkkguNpcpiKURVgGJaFJpzUJDFaSalAKWKpCpNoWUlIeNSjMnN4F117XqDvs9r6034ChpsNz6PUx20LAng3QCarvW-wypfdbaGbpdzlu97y3WaD70F9vogBW_AVR00xvq_AxH-TJI0YFcDZhHxfzs4fgE273PB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28614107</pqid></control><display><type>article</type><title>Spatial soliton deflection mechanism indicated by FD-TD Maxwell's equations modeling</title><source>IEEE Electronic Library (IEL)</source><creator>Joseph, R.M. ; Taflove, A.</creator><creatorcontrib>Joseph, R.M. ; Taflove, A.</creatorcontrib><description>We present first-time calculations from the time-domain vector Maxwell's equations of spatial optical soliton propagation and mutual deflection, including carrier waves, in a 2-D homogeneous Kerr-type nonlinear dielectric. The nonlinear Schrodinger equation predicts that two co-propagating, in-phase spatial solitons remain bound to each other, executing a periodic separation. This disagrees with our new extensively tested finite-difference time-domain (FD-TD) solution of Maxwell's equations. FD-TD shows that co-propagating in-phase spatial solitons become unbound, i.e. diverge to arbitrarily large separations, if the ratio of soliton beamwidth to wavelength is order 1 or less. Not relying upon paraxial approximations or analogies to temporal soliton interactions, FD-TD appears to be a robust means of obtaining detailed models of the interaction of sub-picosecond pulsed light beams in nonlinear media directly in the space-time domain.< ></description><identifier>ISSN: 1041-1135</identifier><identifier>EISSN: 1941-0174</identifier><identifier>DOI: 10.1109/68.329654</identifier><identifier>CODEN: IPTLEL</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Circuit properties ; Dielectrics ; Electric, optical and optoelectronic circuits ; Electromagnetic fields ; Electromagnetic propagation ; Electronics ; Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Maxwell equations ; Miscellaneous ; Nonlinear equations ; Nonlinear optics ; Numerical models ; Optical and optoelectronic circuits ; Optical propagation ; Optical solitons ; Optical solitons; nonlinear guided waves ; Optics ; Physics ; Predictive models ; Time domain analysis</subject><ispartof>IEEE photonics technology letters, 1994-10, Vol.6 (10), p.1251-1254</ispartof><rights>1995 INIST-CNRS</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-4364b405a88ee14136ed592433fba5063b611a5a9289443a55b7fdcb64f4a9143</citedby><cites>FETCH-LOGICAL-c372t-4364b405a88ee14136ed592433fba5063b611a5a9289443a55b7fdcb64f4a9143</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/329654$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/329654$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=3413778$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Joseph, R.M.</creatorcontrib><creatorcontrib>Taflove, A.</creatorcontrib><title>Spatial soliton deflection mechanism indicated by FD-TD Maxwell's equations modeling</title><title>IEEE photonics technology letters</title><addtitle>LPT</addtitle><description>We present first-time calculations from the time-domain vector Maxwell's equations of spatial optical soliton propagation and mutual deflection, including carrier waves, in a 2-D homogeneous Kerr-type nonlinear dielectric. The nonlinear Schrodinger equation predicts that two co-propagating, in-phase spatial solitons remain bound to each other, executing a periodic separation. This disagrees with our new extensively tested finite-difference time-domain (FD-TD) solution of Maxwell's equations. FD-TD shows that co-propagating in-phase spatial solitons become unbound, i.e. diverge to arbitrarily large separations, if the ratio of soliton beamwidth to wavelength is order 1 or less. Not relying upon paraxial approximations or analogies to temporal soliton interactions, FD-TD appears to be a robust means of obtaining detailed models of the interaction of sub-picosecond pulsed light beams in nonlinear media directly in the space-time domain.< ></description><subject>Applied sciences</subject><subject>Circuit properties</subject><subject>Dielectrics</subject><subject>Electric, optical and optoelectronic circuits</subject><subject>Electromagnetic fields</subject><subject>Electromagnetic propagation</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Maxwell equations</subject><subject>Miscellaneous</subject><subject>Nonlinear equations</subject><subject>Nonlinear optics</subject><subject>Numerical models</subject><subject>Optical and optoelectronic circuits</subject><subject>Optical propagation</subject><subject>Optical solitons</subject><subject>Optical solitons; nonlinear guided waves</subject><subject>Optics</subject><subject>Physics</subject><subject>Predictive models</subject><subject>Time domain analysis</subject><issn>1041-1135</issn><issn>1941-0174</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><recordid>eNpFkD1PwzAQhi0EEqUwsDJ5QCCGFDv-SDKilgJSEQNlji7OBYycpI1T0f57XKWC6V7pnnt0egm55GzCOcvudToRcaaVPCIjnkkeMZ7I45BZyJwLdUrOvP9mjEsl5Igs31fQW3DUt872bUNLrBya3oZYo_mCxvqa2qa0BnosabGj81m0nNFX2P6gc7ee4noDe97Tui3R2ebznJxU4DxeHOaYfMwfl9PnaPH29DJ9WERGJHEfSaFlIZmCNEXkkguNpcpiKURVgGJaFJpzUJDFaSalAKWKpCpNoWUlIeNSjMnN4F117XqDvs9r6034ChpsNz6PUx20LAng3QCarvW-wypfdbaGbpdzlu97y3WaD70F9vogBW_AVR00xvq_AxH-TJI0YFcDZhHxfzs4fgE273PB</recordid><startdate>19941001</startdate><enddate>19941001</enddate><creator>Joseph, R.M.</creator><creator>Taflove, A.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>19941001</creationdate><title>Spatial soliton deflection mechanism indicated by FD-TD Maxwell's equations modeling</title><author>Joseph, R.M. ; Taflove, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-4364b405a88ee14136ed592433fba5063b611a5a9289443a55b7fdcb64f4a9143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><topic>Applied sciences</topic><topic>Circuit properties</topic><topic>Dielectrics</topic><topic>Electric, optical and optoelectronic circuits</topic><topic>Electromagnetic fields</topic><topic>Electromagnetic propagation</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Maxwell equations</topic><topic>Miscellaneous</topic><topic>Nonlinear equations</topic><topic>Nonlinear optics</topic><topic>Numerical models</topic><topic>Optical and optoelectronic circuits</topic><topic>Optical propagation</topic><topic>Optical solitons</topic><topic>Optical solitons; nonlinear guided waves</topic><topic>Optics</topic><topic>Physics</topic><topic>Predictive models</topic><topic>Time domain analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Joseph, R.M.</creatorcontrib><creatorcontrib>Taflove, A.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE photonics technology letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Joseph, R.M.</au><au>Taflove, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spatial soliton deflection mechanism indicated by FD-TD Maxwell's equations modeling</atitle><jtitle>IEEE photonics technology letters</jtitle><stitle>LPT</stitle><date>1994-10-01</date><risdate>1994</risdate><volume>6</volume><issue>10</issue><spage>1251</spage><epage>1254</epage><pages>1251-1254</pages><issn>1041-1135</issn><eissn>1941-0174</eissn><coden>IPTLEL</coden><abstract>We present first-time calculations from the time-domain vector Maxwell's equations of spatial optical soliton propagation and mutual deflection, including carrier waves, in a 2-D homogeneous Kerr-type nonlinear dielectric. The nonlinear Schrodinger equation predicts that two co-propagating, in-phase spatial solitons remain bound to each other, executing a periodic separation. This disagrees with our new extensively tested finite-difference time-domain (FD-TD) solution of Maxwell's equations. FD-TD shows that co-propagating in-phase spatial solitons become unbound, i.e. diverge to arbitrarily large separations, if the ratio of soliton beamwidth to wavelength is order 1 or less. Not relying upon paraxial approximations or analogies to temporal soliton interactions, FD-TD appears to be a robust means of obtaining detailed models of the interaction of sub-picosecond pulsed light beams in nonlinear media directly in the space-time domain.< ></abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/68.329654</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1041-1135 |
ispartof | IEEE photonics technology letters, 1994-10, Vol.6 (10), p.1251-1254 |
issn | 1041-1135 1941-0174 |
language | eng |
recordid | cdi_ieee_primary_329654 |
source | IEEE Electronic Library (IEL) |
subjects | Applied sciences Circuit properties Dielectrics Electric, optical and optoelectronic circuits Electromagnetic fields Electromagnetic propagation Electronics Exact sciences and technology Fundamental areas of phenomenology (including applications) Maxwell equations Miscellaneous Nonlinear equations Nonlinear optics Numerical models Optical and optoelectronic circuits Optical propagation Optical solitons Optical solitons nonlinear guided waves Optics Physics Predictive models Time domain analysis |
title | Spatial soliton deflection mechanism indicated by FD-TD Maxwell's equations modeling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T15%3A28%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spatial%20soliton%20deflection%20mechanism%20indicated%20by%20FD-TD%20Maxwell's%20equations%20modeling&rft.jtitle=IEEE%20photonics%20technology%20letters&rft.au=Joseph,%20R.M.&rft.date=1994-10-01&rft.volume=6&rft.issue=10&rft.spage=1251&rft.epage=1254&rft.pages=1251-1254&rft.issn=1041-1135&rft.eissn=1941-0174&rft.coden=IPTLEL&rft_id=info:doi/10.1109/68.329654&rft_dat=%3Cproquest_RIE%3E28614107%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28614107&rft_id=info:pmid/&rft_ieee_id=329654&rfr_iscdi=true |