Spatial soliton deflection mechanism indicated by FD-TD Maxwell's equations modeling

We present first-time calculations from the time-domain vector Maxwell's equations of spatial optical soliton propagation and mutual deflection, including carrier waves, in a 2-D homogeneous Kerr-type nonlinear dielectric. The nonlinear Schrodinger equation predicts that two co-propagating, in-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE photonics technology letters 1994-10, Vol.6 (10), p.1251-1254
Hauptverfasser: Joseph, R.M., Taflove, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present first-time calculations from the time-domain vector Maxwell's equations of spatial optical soliton propagation and mutual deflection, including carrier waves, in a 2-D homogeneous Kerr-type nonlinear dielectric. The nonlinear Schrodinger equation predicts that two co-propagating, in-phase spatial solitons remain bound to each other, executing a periodic separation. This disagrees with our new extensively tested finite-difference time-domain (FD-TD) solution of Maxwell's equations. FD-TD shows that co-propagating in-phase spatial solitons become unbound, i.e. diverge to arbitrarily large separations, if the ratio of soliton beamwidth to wavelength is order 1 or less. Not relying upon paraxial approximations or analogies to temporal soliton interactions, FD-TD appears to be a robust means of obtaining detailed models of the interaction of sub-picosecond pulsed light beams in nonlinear media directly in the space-time domain.< >
ISSN:1041-1135
1941-0174
DOI:10.1109/68.329654