Spatial soliton deflection mechanism indicated by FD-TD Maxwell's equations modeling
We present first-time calculations from the time-domain vector Maxwell's equations of spatial optical soliton propagation and mutual deflection, including carrier waves, in a 2-D homogeneous Kerr-type nonlinear dielectric. The nonlinear Schrodinger equation predicts that two co-propagating, in-...
Gespeichert in:
Veröffentlicht in: | IEEE photonics technology letters 1994-10, Vol.6 (10), p.1251-1254 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present first-time calculations from the time-domain vector Maxwell's equations of spatial optical soliton propagation and mutual deflection, including carrier waves, in a 2-D homogeneous Kerr-type nonlinear dielectric. The nonlinear Schrodinger equation predicts that two co-propagating, in-phase spatial solitons remain bound to each other, executing a periodic separation. This disagrees with our new extensively tested finite-difference time-domain (FD-TD) solution of Maxwell's equations. FD-TD shows that co-propagating in-phase spatial solitons become unbound, i.e. diverge to arbitrarily large separations, if the ratio of soliton beamwidth to wavelength is order 1 or less. Not relying upon paraxial approximations or analogies to temporal soliton interactions, FD-TD appears to be a robust means of obtaining detailed models of the interaction of sub-picosecond pulsed light beams in nonlinear media directly in the space-time domain.< > |
---|---|
ISSN: | 1041-1135 1941-0174 |
DOI: | 10.1109/68.329654 |