Pruning recurrent neural networks for improved generalization performance

Determining the architecture of a neural network is an important issue for any learning task. For recurrent neural networks no general methods exist that permit the estimation of the number of layers of hidden neurons, the size of layers or the number of weights. We present a simple pruning heuristi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on neural networks 1994-09, Vol.5 (5), p.848-851
Hauptverfasser: Giles, C.L., Omlin, C.W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 851
container_issue 5
container_start_page 848
container_title IEEE transactions on neural networks
container_volume 5
creator Giles, C.L.
Omlin, C.W.
description Determining the architecture of a neural network is an important issue for any learning task. For recurrent neural networks no general methods exist that permit the estimation of the number of layers of hidden neurons, the size of layers or the number of weights. We present a simple pruning heuristic that significantly improves the generalization performance of trained recurrent networks. We illustrate this heuristic by training a fully recurrent neural network on positive and negative strings of a regular grammar. We also show that rules extracted from networks trained with this pruning heuristic are more consistent with the rules to be learned. This performance improvement is obtained by pruning and retraining the networks. Simulations are shown for training and pruning a recurrent neural net on strings generated by two regular grammars, a randomly-generated 10-state grammar and an 8-state, triple-parity grammar. Further simulations indicate that this pruning method can have generalization performance superior to that obtained by training with weight decay.< >
doi_str_mv 10.1109/72.317740
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_317740</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>317740</ieee_id><sourcerecordid>28527668</sourcerecordid><originalsourceid>FETCH-LOGICAL-c332t-444743c43abc9c47acaa87b69127ee8828abe6459f25382081e3a87468b638883</originalsourceid><addsrcrecordid>eNp9kEtLw0AUhQdRbK0u3LqQrBQXqfPKPJZSfBQKutB1mExvSjSZ1JlE0V_vlATduToXzncOl4PQKcFzQrC-lnTOiJQc76Ep0ZykGGu2H2_Ms1RTKifoKIRXjAnPsDhEE6KokErgKVo--d5VbpN4sL334LrEQe9NHaX7bP1bSMrWJ1Wz9e0HrJMNOIhu9W26qnXJFny0G-MsHKOD0tQBTkadoZe72-fFQ7p6vF8ublapZYx2KedccmY5M4XVlktjjVGyEJpQCaAUVaYAwTNd0owpihUBFgEuVCGYUorN0OXQGz967yF0eVMFC3VtHLR9yCXjVFKW6Uhe_EtSlVEpxK7yagCtb0PwUOZbXzXGf-UE57uFc0nzYeHIno-lfdHA-o8cJ43A2QBUAPBrj-kfFwN9wQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28527668</pqid></control><display><type>article</type><title>Pruning recurrent neural networks for improved generalization performance</title><source>IEEE Electronic Library (IEL)</source><creator>Giles, C.L. ; Omlin, C.W.</creator><creatorcontrib>Giles, C.L. ; Omlin, C.W.</creatorcontrib><description>Determining the architecture of a neural network is an important issue for any learning task. For recurrent neural networks no general methods exist that permit the estimation of the number of layers of hidden neurons, the size of layers or the number of weights. We present a simple pruning heuristic that significantly improves the generalization performance of trained recurrent networks. We illustrate this heuristic by training a fully recurrent neural network on positive and negative strings of a regular grammar. We also show that rules extracted from networks trained with this pruning heuristic are more consistent with the rules to be learned. This performance improvement is obtained by pruning and retraining the networks. Simulations are shown for training and pruning a recurrent neural net on strings generated by two regular grammars, a randomly-generated 10-state grammar and an 8-state, triple-parity grammar. Further simulations indicate that this pruning method can have generalization performance superior to that obtained by training with weight decay.&lt; &gt;</description><identifier>ISSN: 1045-9227</identifier><identifier>EISSN: 1941-0093</identifier><identifier>DOI: 10.1109/72.317740</identifier><identifier>PMID: 18267860</identifier><identifier>CODEN: ITNNEP</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Clustering algorithms ; Doped fiber amplifiers ; Learning automata ; National electric code ; Neural networks ; Neurons ; Quantization ; Recurrent neural networks ; Space exploration ; State-space methods</subject><ispartof>IEEE transactions on neural networks, 1994-09, Vol.5 (5), p.848-851</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c332t-444743c43abc9c47acaa87b69127ee8828abe6459f25382081e3a87468b638883</citedby><cites>FETCH-LOGICAL-c332t-444743c43abc9c47acaa87b69127ee8828abe6459f25382081e3a87468b638883</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/317740$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/317740$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18267860$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Giles, C.L.</creatorcontrib><creatorcontrib>Omlin, C.W.</creatorcontrib><title>Pruning recurrent neural networks for improved generalization performance</title><title>IEEE transactions on neural networks</title><addtitle>TNN</addtitle><addtitle>IEEE Trans Neural Netw</addtitle><description>Determining the architecture of a neural network is an important issue for any learning task. For recurrent neural networks no general methods exist that permit the estimation of the number of layers of hidden neurons, the size of layers or the number of weights. We present a simple pruning heuristic that significantly improves the generalization performance of trained recurrent networks. We illustrate this heuristic by training a fully recurrent neural network on positive and negative strings of a regular grammar. We also show that rules extracted from networks trained with this pruning heuristic are more consistent with the rules to be learned. This performance improvement is obtained by pruning and retraining the networks. Simulations are shown for training and pruning a recurrent neural net on strings generated by two regular grammars, a randomly-generated 10-state grammar and an 8-state, triple-parity grammar. Further simulations indicate that this pruning method can have generalization performance superior to that obtained by training with weight decay.&lt; &gt;</description><subject>Clustering algorithms</subject><subject>Doped fiber amplifiers</subject><subject>Learning automata</subject><subject>National electric code</subject><subject>Neural networks</subject><subject>Neurons</subject><subject>Quantization</subject><subject>Recurrent neural networks</subject><subject>Space exploration</subject><subject>State-space methods</subject><issn>1045-9227</issn><issn>1941-0093</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLw0AUhQdRbK0u3LqQrBQXqfPKPJZSfBQKutB1mExvSjSZ1JlE0V_vlATduToXzncOl4PQKcFzQrC-lnTOiJQc76Ep0ZykGGu2H2_Ms1RTKifoKIRXjAnPsDhEE6KokErgKVo--d5VbpN4sL334LrEQe9NHaX7bP1bSMrWJ1Wz9e0HrJMNOIhu9W26qnXJFny0G-MsHKOD0tQBTkadoZe72-fFQ7p6vF8ublapZYx2KedccmY5M4XVlktjjVGyEJpQCaAUVaYAwTNd0owpihUBFgEuVCGYUorN0OXQGz967yF0eVMFC3VtHLR9yCXjVFKW6Uhe_EtSlVEpxK7yagCtb0PwUOZbXzXGf-UE57uFc0nzYeHIno-lfdHA-o8cJ43A2QBUAPBrj-kfFwN9wQ</recordid><startdate>19940901</startdate><enddate>19940901</enddate><creator>Giles, C.L.</creator><creator>Omlin, C.W.</creator><general>IEEE</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope></search><sort><creationdate>19940901</creationdate><title>Pruning recurrent neural networks for improved generalization performance</title><author>Giles, C.L. ; Omlin, C.W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c332t-444743c43abc9c47acaa87b69127ee8828abe6459f25382081e3a87468b638883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><topic>Clustering algorithms</topic><topic>Doped fiber amplifiers</topic><topic>Learning automata</topic><topic>National electric code</topic><topic>Neural networks</topic><topic>Neurons</topic><topic>Quantization</topic><topic>Recurrent neural networks</topic><topic>Space exploration</topic><topic>State-space methods</topic><toplevel>online_resources</toplevel><creatorcontrib>Giles, C.L.</creatorcontrib><creatorcontrib>Omlin, C.W.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on neural networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Giles, C.L.</au><au>Omlin, C.W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pruning recurrent neural networks for improved generalization performance</atitle><jtitle>IEEE transactions on neural networks</jtitle><stitle>TNN</stitle><addtitle>IEEE Trans Neural Netw</addtitle><date>1994-09-01</date><risdate>1994</risdate><volume>5</volume><issue>5</issue><spage>848</spage><epage>851</epage><pages>848-851</pages><issn>1045-9227</issn><eissn>1941-0093</eissn><coden>ITNNEP</coden><abstract>Determining the architecture of a neural network is an important issue for any learning task. For recurrent neural networks no general methods exist that permit the estimation of the number of layers of hidden neurons, the size of layers or the number of weights. We present a simple pruning heuristic that significantly improves the generalization performance of trained recurrent networks. We illustrate this heuristic by training a fully recurrent neural network on positive and negative strings of a regular grammar. We also show that rules extracted from networks trained with this pruning heuristic are more consistent with the rules to be learned. This performance improvement is obtained by pruning and retraining the networks. Simulations are shown for training and pruning a recurrent neural net on strings generated by two regular grammars, a randomly-generated 10-state grammar and an 8-state, triple-parity grammar. Further simulations indicate that this pruning method can have generalization performance superior to that obtained by training with weight decay.&lt; &gt;</abstract><cop>United States</cop><pub>IEEE</pub><pmid>18267860</pmid><doi>10.1109/72.317740</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1045-9227
ispartof IEEE transactions on neural networks, 1994-09, Vol.5 (5), p.848-851
issn 1045-9227
1941-0093
language eng
recordid cdi_ieee_primary_317740
source IEEE Electronic Library (IEL)
subjects Clustering algorithms
Doped fiber amplifiers
Learning automata
National electric code
Neural networks
Neurons
Quantization
Recurrent neural networks
Space exploration
State-space methods
title Pruning recurrent neural networks for improved generalization performance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T14%3A59%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pruning%20recurrent%20neural%20networks%20for%20improved%20generalization%20performance&rft.jtitle=IEEE%20transactions%20on%20neural%20networks&rft.au=Giles,%20C.L.&rft.date=1994-09-01&rft.volume=5&rft.issue=5&rft.spage=848&rft.epage=851&rft.pages=848-851&rft.issn=1045-9227&rft.eissn=1941-0093&rft.coden=ITNNEP&rft_id=info:doi/10.1109/72.317740&rft_dat=%3Cproquest_RIE%3E28527668%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28527668&rft_id=info:pmid/18267860&rft_ieee_id=317740&rfr_iscdi=true