Pruning recurrent neural networks for improved generalization performance

Determining the architecture of a neural network is an important issue for any learning task. For recurrent neural networks no general methods exist that permit the estimation of the number of layers of hidden neurons, the size of layers or the number of weights. We present a simple pruning heuristi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on neural networks 1994-09, Vol.5 (5), p.848-851
Hauptverfasser: Giles, C.L., Omlin, C.W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Determining the architecture of a neural network is an important issue for any learning task. For recurrent neural networks no general methods exist that permit the estimation of the number of layers of hidden neurons, the size of layers or the number of weights. We present a simple pruning heuristic that significantly improves the generalization performance of trained recurrent networks. We illustrate this heuristic by training a fully recurrent neural network on positive and negative strings of a regular grammar. We also show that rules extracted from networks trained with this pruning heuristic are more consistent with the rules to be learned. This performance improvement is obtained by pruning and retraining the networks. Simulations are shown for training and pruning a recurrent neural net on strings generated by two regular grammars, a randomly-generated 10-state grammar and an 8-state, triple-parity grammar. Further simulations indicate that this pruning method can have generalization performance superior to that obtained by training with weight decay.< >
ISSN:1045-9227
1941-0093
DOI:10.1109/72.317740