Gate dielectric integrity and reliability in 0.5- mu m CMOS technology

Gate dielectric process and process-integration decisions involving the 0.5- mu m 16-Mb DRAM process for 200-mm wafers are discussed. Process-integration issues before, during, and after thin gate dielectric growth all affect the resulting dielectric reliability. Processes which are critical factors...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Strong, A.W., Stamper, A.K., Bolam, R.J., Furukawa, T., Gow, C.J., Gow, T.R., Martin, D.W., Mittl, S.W., Nakos, J.S., Pennington, S.L.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 21
container_issue
container_start_page 18
container_title
container_volume
creator Strong, A.W.
Stamper, A.K.
Bolam, R.J.
Furukawa, T.
Gow, C.J.
Gow, T.R.
Martin, D.W.
Mittl, S.W.
Nakos, J.S.
Pennington, S.L.
description Gate dielectric process and process-integration decisions involving the 0.5- mu m 16-Mb DRAM process for 200-mm wafers are discussed. Process-integration issues before, during, and after thin gate dielectric growth all affect the resulting dielectric reliability. Processes which are critical factors in gate dielectric integrity and reliability are discussed. IBM's 16-Mb DRAM CMOS technology employs shallow-trench isolation between the deep-trench storage capacitors. P-channel transfer devices are used and are connected to the deep-trench capacitors via a doped polysilicon surface strap. The gate dielectric is a 13-nm planar oxide and the transfer device channel lengths are 0.5 mu m. Gate dielectric yields were measured using long serpentine antenna test structures consisting of 128-kb cells in addition to segments of 16-Mb arrays. Dramatic gate dielectric reliability improvements have been achieved even with a starting point that was known to be less than optimal for the gate dielectric reliability. These improvements are graphically summarized.< >
doi_str_mv 10.1109/RELPHY.1993.283309
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_283309</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>283309</ieee_id><sourcerecordid>283309</sourcerecordid><originalsourceid>FETCH-LOGICAL-i104t-b3de88788ebe68acda4193f1a426046cef9aef0017536b272bcc2fbe2eca85063</originalsourceid><addsrcrecordid>eNotj8tOwzAURC0hJKD0B7ryDyRc24ljL1HUB1JQEY8Fq8p2rotRkiLHLPL3pCqzOKOzGWkIWTHIGQP98LpuXnafOdNa5FwJAfqK3EGlQMzg6oYsx_Eb5ig-O7slm61JSNuAHboUg6NhSHiMIU3UDC2N2AVjQ3f2MFDIy4z2v7Sn9fP-jSZ0X8OpOx2ne3LtTTfi8r8X5GOzfq93WbPfPtWPTRYYFCmzokWlKqXQolTGtaZgWnhmCi6hkA69NugBWFUKaXnFrXPcW-TojCpBigVZXXYDIh5-YuhNnA6Xp-IPeJZJcg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Gate dielectric integrity and reliability in 0.5- mu m CMOS technology</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Strong, A.W. ; Stamper, A.K. ; Bolam, R.J. ; Furukawa, T. ; Gow, C.J. ; Gow, T.R. ; Martin, D.W. ; Mittl, S.W. ; Nakos, J.S. ; Pennington, S.L.</creator><creatorcontrib>Strong, A.W. ; Stamper, A.K. ; Bolam, R.J. ; Furukawa, T. ; Gow, C.J. ; Gow, T.R. ; Martin, D.W. ; Mittl, S.W. ; Nakos, J.S. ; Pennington, S.L.</creatorcontrib><description>Gate dielectric process and process-integration decisions involving the 0.5- mu m 16-Mb DRAM process for 200-mm wafers are discussed. Process-integration issues before, during, and after thin gate dielectric growth all affect the resulting dielectric reliability. Processes which are critical factors in gate dielectric integrity and reliability are discussed. IBM's 16-Mb DRAM CMOS technology employs shallow-trench isolation between the deep-trench storage capacitors. P-channel transfer devices are used and are connected to the deep-trench capacitors via a doped polysilicon surface strap. The gate dielectric is a 13-nm planar oxide and the transfer device channel lengths are 0.5 mu m. Gate dielectric yields were measured using long serpentine antenna test structures consisting of 128-kb cells in addition to segments of 16-Mb arrays. Dramatic gate dielectric reliability improvements have been achieved even with a starting point that was known to be less than optimal for the gate dielectric reliability. These improvements are graphically summarized.&lt; &gt;</description><identifier>ISBN: 0780307828</identifier><identifier>ISBN: 9780780307827</identifier><identifier>DOI: 10.1109/RELPHY.1993.283309</identifier><language>eng</language><publisher>IEEE</publisher><subject>Acceleration ; Capacitors ; CMOS technology ; Dielectrics ; Failure analysis ; Random access memory ; Stress ; Temperature ; Testing ; Voltage</subject><ispartof>31st Annual Proceedings Reliability Physics 1993, 1993, p.18-21</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/283309$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,4036,4037,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/283309$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Strong, A.W.</creatorcontrib><creatorcontrib>Stamper, A.K.</creatorcontrib><creatorcontrib>Bolam, R.J.</creatorcontrib><creatorcontrib>Furukawa, T.</creatorcontrib><creatorcontrib>Gow, C.J.</creatorcontrib><creatorcontrib>Gow, T.R.</creatorcontrib><creatorcontrib>Martin, D.W.</creatorcontrib><creatorcontrib>Mittl, S.W.</creatorcontrib><creatorcontrib>Nakos, J.S.</creatorcontrib><creatorcontrib>Pennington, S.L.</creatorcontrib><title>Gate dielectric integrity and reliability in 0.5- mu m CMOS technology</title><title>31st Annual Proceedings Reliability Physics 1993</title><addtitle>RELPHY</addtitle><description>Gate dielectric process and process-integration decisions involving the 0.5- mu m 16-Mb DRAM process for 200-mm wafers are discussed. Process-integration issues before, during, and after thin gate dielectric growth all affect the resulting dielectric reliability. Processes which are critical factors in gate dielectric integrity and reliability are discussed. IBM's 16-Mb DRAM CMOS technology employs shallow-trench isolation between the deep-trench storage capacitors. P-channel transfer devices are used and are connected to the deep-trench capacitors via a doped polysilicon surface strap. The gate dielectric is a 13-nm planar oxide and the transfer device channel lengths are 0.5 mu m. Gate dielectric yields were measured using long serpentine antenna test structures consisting of 128-kb cells in addition to segments of 16-Mb arrays. Dramatic gate dielectric reliability improvements have been achieved even with a starting point that was known to be less than optimal for the gate dielectric reliability. These improvements are graphically summarized.&lt; &gt;</description><subject>Acceleration</subject><subject>Capacitors</subject><subject>CMOS technology</subject><subject>Dielectrics</subject><subject>Failure analysis</subject><subject>Random access memory</subject><subject>Stress</subject><subject>Temperature</subject><subject>Testing</subject><subject>Voltage</subject><isbn>0780307828</isbn><isbn>9780780307827</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1993</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj8tOwzAURC0hJKD0B7ryDyRc24ljL1HUB1JQEY8Fq8p2rotRkiLHLPL3pCqzOKOzGWkIWTHIGQP98LpuXnafOdNa5FwJAfqK3EGlQMzg6oYsx_Eb5ig-O7slm61JSNuAHboUg6NhSHiMIU3UDC2N2AVjQ3f2MFDIy4z2v7Sn9fP-jSZ0X8OpOx2ne3LtTTfi8r8X5GOzfq93WbPfPtWPTRYYFCmzokWlKqXQolTGtaZgWnhmCi6hkA69NugBWFUKaXnFrXPcW-TojCpBigVZXXYDIh5-YuhNnA6Xp-IPeJZJcg</recordid><startdate>1993</startdate><enddate>1993</enddate><creator>Strong, A.W.</creator><creator>Stamper, A.K.</creator><creator>Bolam, R.J.</creator><creator>Furukawa, T.</creator><creator>Gow, C.J.</creator><creator>Gow, T.R.</creator><creator>Martin, D.W.</creator><creator>Mittl, S.W.</creator><creator>Nakos, J.S.</creator><creator>Pennington, S.L.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>1993</creationdate><title>Gate dielectric integrity and reliability in 0.5- mu m CMOS technology</title><author>Strong, A.W. ; Stamper, A.K. ; Bolam, R.J. ; Furukawa, T. ; Gow, C.J. ; Gow, T.R. ; Martin, D.W. ; Mittl, S.W. ; Nakos, J.S. ; Pennington, S.L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i104t-b3de88788ebe68acda4193f1a426046cef9aef0017536b272bcc2fbe2eca85063</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1993</creationdate><topic>Acceleration</topic><topic>Capacitors</topic><topic>CMOS technology</topic><topic>Dielectrics</topic><topic>Failure analysis</topic><topic>Random access memory</topic><topic>Stress</topic><topic>Temperature</topic><topic>Testing</topic><topic>Voltage</topic><toplevel>online_resources</toplevel><creatorcontrib>Strong, A.W.</creatorcontrib><creatorcontrib>Stamper, A.K.</creatorcontrib><creatorcontrib>Bolam, R.J.</creatorcontrib><creatorcontrib>Furukawa, T.</creatorcontrib><creatorcontrib>Gow, C.J.</creatorcontrib><creatorcontrib>Gow, T.R.</creatorcontrib><creatorcontrib>Martin, D.W.</creatorcontrib><creatorcontrib>Mittl, S.W.</creatorcontrib><creatorcontrib>Nakos, J.S.</creatorcontrib><creatorcontrib>Pennington, S.L.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Strong, A.W.</au><au>Stamper, A.K.</au><au>Bolam, R.J.</au><au>Furukawa, T.</au><au>Gow, C.J.</au><au>Gow, T.R.</au><au>Martin, D.W.</au><au>Mittl, S.W.</au><au>Nakos, J.S.</au><au>Pennington, S.L.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Gate dielectric integrity and reliability in 0.5- mu m CMOS technology</atitle><btitle>31st Annual Proceedings Reliability Physics 1993</btitle><stitle>RELPHY</stitle><date>1993</date><risdate>1993</risdate><spage>18</spage><epage>21</epage><pages>18-21</pages><isbn>0780307828</isbn><isbn>9780780307827</isbn><abstract>Gate dielectric process and process-integration decisions involving the 0.5- mu m 16-Mb DRAM process for 200-mm wafers are discussed. Process-integration issues before, during, and after thin gate dielectric growth all affect the resulting dielectric reliability. Processes which are critical factors in gate dielectric integrity and reliability are discussed. IBM's 16-Mb DRAM CMOS technology employs shallow-trench isolation between the deep-trench storage capacitors. P-channel transfer devices are used and are connected to the deep-trench capacitors via a doped polysilicon surface strap. The gate dielectric is a 13-nm planar oxide and the transfer device channel lengths are 0.5 mu m. Gate dielectric yields were measured using long serpentine antenna test structures consisting of 128-kb cells in addition to segments of 16-Mb arrays. Dramatic gate dielectric reliability improvements have been achieved even with a starting point that was known to be less than optimal for the gate dielectric reliability. These improvements are graphically summarized.&lt; &gt;</abstract><pub>IEEE</pub><doi>10.1109/RELPHY.1993.283309</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 0780307828
ispartof 31st Annual Proceedings Reliability Physics 1993, 1993, p.18-21
issn
language eng
recordid cdi_ieee_primary_283309
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Acceleration
Capacitors
CMOS technology
Dielectrics
Failure analysis
Random access memory
Stress
Temperature
Testing
Voltage
title Gate dielectric integrity and reliability in 0.5- mu m CMOS technology
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T13%3A03%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Gate%20dielectric%20integrity%20and%20reliability%20in%200.5-%20mu%20m%20CMOS%20technology&rft.btitle=31st%20Annual%20Proceedings%20Reliability%20Physics%201993&rft.au=Strong,%20A.W.&rft.date=1993&rft.spage=18&rft.epage=21&rft.pages=18-21&rft.isbn=0780307828&rft.isbn_list=9780780307827&rft_id=info:doi/10.1109/RELPHY.1993.283309&rft_dat=%3Cieee_6IE%3E283309%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=283309&rfr_iscdi=true