Detection and diagnosis of parameters change in linear systems using time-frequency transformation
A systematic approach to selecting and optimizing kernel functions of a time-frequency transformation for parameter change detection in linear, piecewise-constant-parameter systems is presented. The time-frequency transformation is applied to the system output, and the local moments' sensitivit...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A systematic approach to selecting and optimizing kernel functions of a time-frequency transformation for parameter change detection in linear, piecewise-constant-parameter systems is presented. The time-frequency transformation is applied to the system output, and the local moments' sensitivity with respect to the change is maximized. The local moments' optimization leads to a partial characterization of the transformation kernel function. Under proper kernel constraints, the local moments are simply related to the characteristic parameters of a linear system (e.g., natural frequencies, time constants, damping coefficients) and thus are suitable for parameter change diagnosis. An illustrative numerical example based on a second-order linear system is given.< > |
---|---|
DOI: | 10.1109/TFTSA.1992.274140 |