Using genetic algorithms to select inputs for neural networks

The application of neural networks to nuclear power plants for fault diagnostics is a very challenging task. How to select proper input variables for neural networks from hundreds of plant processing variables is crucially important to the success. Genetic algorithms are used in this study to guide...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Guo, Z., Uhrig, R.E.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The application of neural networks to nuclear power plants for fault diagnostics is a very challenging task. How to select proper input variables for neural networks from hundreds of plant processing variables is crucially important to the success. Genetic algorithms are used in this study to guide the search for optimal combination of inputs for the neural networks to reach the criteria of fewer inputs, faster training, and more accurate recall. Data from Tennessee Valley Authority (TVA) Watts Bar Nuclear Power Plant simulator are used to demonstrate the potential applications of genetic algorithms and neural networks to nuclear power plants.< >
DOI:10.1109/COGANN.1992.273937